Spaces:
Runtime error
Runtime error
uu
Browse files
app.py
CHANGED
@@ -3,38 +3,55 @@ from pytube import YouTube
|
|
3 |
import subprocess
|
4 |
from huggingsound import SpeechRecognitionModel
|
5 |
import torch
|
6 |
-
import librosa
|
7 |
from transformers import pipeline
|
8 |
|
9 |
def process_video(video_url):
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
try:
|
11 |
-
# Download audio from YouTube
|
12 |
yt = YouTube(video_url)
|
13 |
audio_file = yt.streams.filter(only_audio=True, file_extension='mp4').first().download(filename='ytaudio.mp4')
|
14 |
-
except Exception as e:
|
15 |
-
return f"Error downloading audio from YouTube: {e}"
|
16 |
-
|
17 |
-
try:
|
18 |
-
# Convert to suitable format for speech recognition
|
19 |
subprocess.run(['ffmpeg', '-i', 'ytaudio.mp4', '-acodec', 'pcm_s16le', '-ar', '16000', 'ytaudio.wav'], check=True)
|
20 |
-
except
|
21 |
-
|
|
|
|
|
22 |
|
23 |
try:
|
24 |
-
# Speech Recognition
|
25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english", device=device)
|
27 |
transcription = model.transcribe(['ytaudio.wav'])[0]['transcription']
|
28 |
except Exception as e:
|
29 |
-
|
|
|
|
|
30 |
|
31 |
try:
|
32 |
-
# Summarize Transcription
|
33 |
summarization = pipeline('summarization')
|
34 |
summarized_text = summarization(transcription, max_length=130, min_length=30, do_sample=False)
|
35 |
-
|
36 |
except Exception as e:
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
iface = gr.Interface(fn=process_video, inputs=gr.inputs.Textbox(lines=2, placeholder="Enter YouTube Video URL Here..."), outputs="text", title="YouTube Video Summarizer", description="This tool extracts audio from a YouTube video, transcribes it, and provides a summary.")
|
40 |
iface.launch()
|
|
|
3 |
import subprocess
|
4 |
from huggingsound import SpeechRecognitionModel
|
5 |
import torch
|
|
|
6 |
from transformers import pipeline
|
7 |
|
8 |
def process_video(video_url):
|
9 |
+
response = {
|
10 |
+
'status': 'Success',
|
11 |
+
'message': '',
|
12 |
+
'data': ''
|
13 |
+
}
|
14 |
+
|
15 |
try:
|
|
|
16 |
yt = YouTube(video_url)
|
17 |
audio_file = yt.streams.filter(only_audio=True, file_extension='mp4').first().download(filename='ytaudio.mp4')
|
|
|
|
|
|
|
|
|
|
|
18 |
subprocess.run(['ffmpeg', '-i', 'ytaudio.mp4', '-acodec', 'pcm_s16le', '-ar', '16000', 'ytaudio.wav'], check=True)
|
19 |
+
except Exception as e:
|
20 |
+
response['status'] = 'Error'
|
21 |
+
response['message'] = f'Failed to download and convert video: {str(e)}'
|
22 |
+
return response
|
23 |
|
24 |
try:
|
|
|
25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english", device=device)
|
27 |
transcription = model.transcribe(['ytaudio.wav'])[0]['transcription']
|
28 |
except Exception as e:
|
29 |
+
response['status'] = 'Error'
|
30 |
+
response['message'] = f'Failed during speech recognition: {str(e)}'
|
31 |
+
return response
|
32 |
|
33 |
try:
|
|
|
34 |
summarization = pipeline('summarization')
|
35 |
summarized_text = summarization(transcription, max_length=130, min_length=30, do_sample=False)
|
36 |
+
response['data'] = summarized_text[0]['summary_text']
|
37 |
except Exception as e:
|
38 |
+
response['status'] = 'Error'
|
39 |
+
response['message'] = f'Failed during summarization: {str(e)}'
|
40 |
+
return response
|
41 |
+
|
42 |
+
return response
|
43 |
+
|
44 |
+
iface = gr.Interface(
|
45 |
+
fn=process_video,
|
46 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter YouTube Video URL Here..."),
|
47 |
+
outputs=[
|
48 |
+
gr.outputs.Textbox(label="Status"),
|
49 |
+
gr.outputs.Textbox(label="Message"),
|
50 |
+
gr.outputs.Textbox(label="Summary")
|
51 |
+
],
|
52 |
+
title="YouTube Video Summarizer",
|
53 |
+
description="This tool extracts audio from a YouTube video, transcribes it, and provides a summary.",
|
54 |
+
enable_queue=True # Enable request queuing
|
55 |
+
)
|
56 |
|
|
|
57 |
iface.launch()
|