Spaces:
Sleeping
Sleeping
File size: 1,562 Bytes
2d11ae0 91b4905 2d11ae0 91b4905 2d11ae0 91b4905 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import streamlit as st
from transformers import BartForConditionalGeneration, BartTokenizer
from youtube_transcript_api import YouTubeTranscriptApi
# Load BART model and tokenizer
model_name = 'facebook/bart-large-cnn'
tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
@st.cache
def get_transcript(url):
try:
video_id = url.split('=')[1]
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
transcript_text = ""
for item in transcript_list:
transcript_text += item['text'] + "\n"
return transcript_text
except Exception as e:
return "Error fetching transcript: " + str(e)
@st.cache
def summarize_transcript(transcript):
input_ids = tokenizer.encode("summarize: " + transcript, return_tensors="pt", max_length=1024, truncation=True)
summary_ids = model.generate(input_ids, num_beams=4, min_length=30, max_length=200, early_stopping=True)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
def main():
st.title("YouTube Video Transcription Summarizer")
video_url = st.text_input("Enter YouTube Video URL:")
if st.button("Summarize Transcript"):
transcript = get_transcript(video_url)
if not transcript:
st.error("Error fetching transcript.")
else:
summary = summarize_transcript(transcript)
st.subheader("Summary:")
st.write(summary)
if __name__ == "__main__":
main()
|