Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import BartForConditionalGeneration, BartTokenizer | |
from youtube_transcript_api import YouTubeTranscriptApi | |
from fastapi import FastAPI, Request | |
from fastapi.responses import JSONResponse | |
import uvicorn | |
# Initialize Streamlit app | |
st.title("YouTube Video Transcription Summarizer") | |
video_url = st.text_input("Enter YouTube Video URL:") | |
# Initialize FastAPI app | |
app = FastAPI() | |
# Load BART model and tokenizer | |
model_name = 'facebook/bart-large-cnn' | |
tokenizer = BartTokenizer.from_pretrained(model_name) | |
model = BartForConditionalGeneration.from_pretrained(model_name) | |
# Function to fetch transcript from YouTube URL | |
def get_transcript(url): | |
try: | |
video_id = url.split('=')[1] | |
transcript_list = YouTubeTranscriptApi.get_transcript(video_id) | |
transcript_text = "" | |
for item in transcript_list: | |
transcript_text += item['text'] + "\n" | |
return transcript_text | |
except Exception as e: | |
return None | |
# Function to summarize transcript | |
def summarize_transcript(transcript): | |
input_ids = tokenizer.encode("summarize: " + transcript, return_tensors="pt", max_length=1024, truncation=True) | |
summary_ids = model.generate(input_ids, num_beams=4, min_length=30, max_length=200, early_stopping=True) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary | |
# API endpoint to summarize transcript | |
async def summarize_transcript_api(request: Request): | |
data = await request.json() | |
video_url = data.get('video_url') | |
transcript = get_transcript(video_url) | |
if transcript: | |
summary = summarize_transcript(transcript) | |
return JSONResponse(content={"summary": summary}) | |
else: | |
return JSONResponse(content={"error": "Error fetching transcript."}, status_code=400) | |
# Run Streamlit app | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=8000) | |