cfc-tech's picture
commit
8beb8ec verified
raw
history blame
1.98 kB
import streamlit as st
from transformers import BartForConditionalGeneration, BartTokenizer
from youtube_transcript_api import YouTubeTranscriptApi
from fastapi import FastAPI, Request
from fastapi.responses import JSONResponse
import uvicorn
# Initialize Streamlit app
st.title("YouTube Video Transcription Summarizer")
video_url = st.text_input("Enter YouTube Video URL:")
# Initialize FastAPI app
app = FastAPI()
# Load BART model and tokenizer
model_name = 'facebook/bart-large-cnn'
tokenizer = BartTokenizer.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
# Function to fetch transcript from YouTube URL
@st.cache
def get_transcript(url):
try:
video_id = url.split('=')[1]
transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
transcript_text = ""
for item in transcript_list:
transcript_text += item['text'] + "\n"
return transcript_text
except Exception as e:
return None
# Function to summarize transcript
@st.cache
def summarize_transcript(transcript):
input_ids = tokenizer.encode("summarize: " + transcript, return_tensors="pt", max_length=1024, truncation=True)
summary_ids = model.generate(input_ids, num_beams=4, min_length=30, max_length=200, early_stopping=True)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
# API endpoint to summarize transcript
@app.post("/summarize_transcript")
async def summarize_transcript_api(request: Request):
data = await request.json()
video_url = data.get('video_url')
transcript = get_transcript(video_url)
if transcript:
summary = summarize_transcript(transcript)
return JSONResponse(content={"summary": summary})
else:
return JSONResponse(content={"error": "Error fetching transcript."}, status_code=400)
# Run Streamlit app
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)