Spaces:
Sleeping
Sleeping
import gradio as gr | |
from pytube import YouTube | |
import subprocess | |
from huggingsound import SpeechRecognitionModel | |
import torch | |
import librosa | |
import soundfile as sf | |
from transformers import pipeline | |
def process_video(video_url): | |
yt = YouTube(video_url) | |
audio_file = yt.streams.filter(only_audio=True, file_extension='mp4').first().download(filename='ytaudio.mp4') | |
subprocess.run(['ffmpeg', '-i', 'ytaudio.mp4', '-acodec', 'pcm_s16le', '-ar', '16000', 'ytaudio.wav']) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english", device=device) | |
input_file = 'ytaudio.wav' | |
stream = librosa.stream(input_file, block_length=30, frame_length=16000, hop_length=16000) | |
full_transcript = '' | |
for i, speech in enumerate(stream): | |
sf.write(f'{i}.wav', speech, 16000) | |
transcription = model.transcribe([f'{i}.wav'])[0]['transcription'] | |
full_transcript += transcription + ' ' | |
summarization = pipeline('summarization') | |
summarized_text = summarization(full_transcript, max_length=130, min_length=30, do_sample=False) | |
return summarized_text[0]['summary_text'] | |
iface = gr.Interface(fn=process_video, inputs="text", outputs="text", title="YouTube Video Summarizer") | |
iface.launch() | |