Spaces:
Sleeping
Sleeping
first commit
Browse files
app.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from pytube import YouTube
|
| 3 |
+
from moviepy.editor import *
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
import librosa
|
| 8 |
+
|
| 9 |
+
# Streamlit interface setup
|
| 10 |
+
st.title("YouTube Video Summarizer")
|
| 11 |
+
|
| 12 |
+
youtube_link = st.text_input("Enter YouTube Video Link:")
|
| 13 |
+
|
| 14 |
+
if st.button('Summarize'):
|
| 15 |
+
if not youtube_link:
|
| 16 |
+
st.warning("Please enter a valid YouTube link.")
|
| 17 |
+
else:
|
| 18 |
+
with st.spinner("Processing..."):
|
| 19 |
+
try:
|
| 20 |
+
# Download YouTube Video
|
| 21 |
+
yt = YouTube(youtube_link)
|
| 22 |
+
video = yt.streams.filter(only_audio=True).first()
|
| 23 |
+
download_path = video.download()
|
| 24 |
+
|
| 25 |
+
# Show progress
|
| 26 |
+
st.progress(25)
|
| 27 |
+
|
| 28 |
+
# Extract Audio
|
| 29 |
+
video_clip = AudioFileClip(download_path)
|
| 30 |
+
audio_path = download_path.replace('.mp4', '.wav')
|
| 31 |
+
video_clip.write_audiofile(audio_path)
|
| 32 |
+
|
| 33 |
+
# Show progress
|
| 34 |
+
st.progress(50)
|
| 35 |
+
|
| 36 |
+
# Speech to Text
|
| 37 |
+
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
|
| 38 |
+
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
| 39 |
+
|
| 40 |
+
# Load and process the audio
|
| 41 |
+
speech, _ = librosa.load(audio_path, sr=16000)
|
| 42 |
+
input_values = tokenizer(speech, return_tensors="pt").input_values
|
| 43 |
+
logits = model(input_values).logits
|
| 44 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 45 |
+
|
| 46 |
+
# Decode the speech
|
| 47 |
+
transcription = tokenizer.decode(predicted_ids[0])
|
| 48 |
+
|
| 49 |
+
# Show progress
|
| 50 |
+
st.progress(75)
|
| 51 |
+
|
| 52 |
+
# Summarization
|
| 53 |
+
summarizer = pipeline("summarization")
|
| 54 |
+
summary = summarizer(transcription, max_length=130, min_length=30, do_sample=False)
|
| 55 |
+
|
| 56 |
+
# Display the summary
|
| 57 |
+
st.success("Done!")
|
| 58 |
+
st.write("### Summary:")
|
| 59 |
+
st.write(summary[0]['summary_text'])
|
| 60 |
+
|
| 61 |
+
# Final progress
|
| 62 |
+
st.progress(100)
|
| 63 |
+
|
| 64 |
+
except Exception as e:
|
| 65 |
+
st.error(f"An error occurred: {e}")
|
| 66 |
+
|