Spaces:
Sleeping
Sleeping
app
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from pytube import YouTube
|
3 |
+
import subprocess
|
4 |
+
from huggingsound import SpeechRecognitionModel
|
5 |
+
import torch
|
6 |
+
import librosa
|
7 |
+
import soundfile as sf
|
8 |
+
from transformers import pipeline
|
9 |
+
|
10 |
+
def process_video(video_url):
|
11 |
+
yt = YouTube(video_url)
|
12 |
+
audio_file = yt.streams.filter(only_audio=True, file_extension='mp4').first().download(filename='ytaudio.mp4')
|
13 |
+
subprocess.run(['ffmpeg', '-i', 'ytaudio.mp4', '-acodec', 'pcm_s16le', '-ar', '16000', 'ytaudio.wav'])
|
14 |
+
|
15 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
+
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english", device=device)
|
17 |
+
|
18 |
+
input_file = 'ytaudio.wav'
|
19 |
+
stream = librosa.stream(input_file, block_length=30, frame_length=16000, hop_length=16000)
|
20 |
+
|
21 |
+
full_transcript = ''
|
22 |
+
for i, speech in enumerate(stream):
|
23 |
+
sf.write(f'{i}.wav', speech, 16000)
|
24 |
+
transcription = model.transcribe([f'{i}.wav'])[0]['transcription']
|
25 |
+
full_transcript += transcription + ' '
|
26 |
+
|
27 |
+
summarization = pipeline('summarization')
|
28 |
+
summarized_text = summarization(full_transcript, max_length=130, min_length=30, do_sample=False)
|
29 |
+
return summarized_text[0]['summary_text']
|
30 |
+
|
31 |
+
iface = gr.Interface(fn=process_video, inputs="text", outputs="text", title="YouTube Video Summarizer")
|
32 |
+
iface.launch()
|