File size: 2,968 Bytes
cf5d81e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from transformers import DistilBertTokenizerFast, DistilBertModel, AdamW
import torch
from torch.utils.data import Dataset, DataLoader
import pandas as pd


# assignment 3
model_name = "distilbert-base-uncased"
tokenizer = DistilBertTokenizerFast.from_pretrained(model_name)

print("Reading data...")
data = pd.read_csv("./data/train.csv")
toxic_data = pd.DataFrame()
toxic_data["text"] = data["comment_text"]
toxic_data["labels"] = data.iloc[:, 2:].values.tolist()
print(toxic_data.head())

class ToxicDataset(Dataset):

    def __init__(self, dataframe, tokenizer):
        self.tokenizer = tokenizer
        self.data = dataframe
        self.text = dataframe.text
        self.labels = self.data.labels

    def __len__(self):
        return len(self.text)
    
    def __getitem__(self, idx):
        text = str(self.text[idx])
        if len(text) > 12:
            text = text[:12]

        inputs = self.tokenizer.encode_plus(
            text,
            None,
            max_length=12,
            add_special_tokens=True,
            pad_to_max_length=True,
            return_token_type_ids=True
        )

        ids = inputs["input_ids"]
        mask = inputs["attention_mask"]
        token_type_ids = inputs["token_type_ids"]

        return {
            "ids": torch.tensor(ids, dtype=torch.long),
            "mask": torch.tensor(mask, dtype=torch.long),
            "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
            "targets": torch.tensor(self.labels[idx], dtype=torch.float)
        }


print("Data read. Splitting data...")
train_data = toxic_data.sample(frac=.8)
test_data = toxic_data.drop(train_data.index).reset_index(drop=True)
train_data = train_data.reset_index(drop=True)

print("Data split. Tokenizing data...")
train_set = ToxicDataset(train_data, tokenizer)
test_set = ToxicDataset(test_data, tokenizer)

train_loader = DataLoader(train_set, batch_size=8, shuffle=True, num_workers=0)
test_loader = DataLoader(test_set, batch_size=8, shuffle=True, num_workers=0)

print("Data tokenized. Beginning training...")

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

model = DistilBertModel.from_pretrained(model_name)
model.to(device)
model.train()

optim = AdamW(model.parameters(), lr=5e-5)

num_train_epochs = 2

for epoch in range(num_train_epochs):
    for batch in train_loader:
        optim.zero_grad()
        input_ids = batch["ids"].to(device)
        attention_mask = batch["mask"].to(device)
        token_type_ids = batch["token_type_ids"].to(device, dtype = torch.long)
        targets = batch["targets"].to(device)

        outputs = model(input_ids, attention_mask, token_type_ids)
        
        loss = torch.nn.BCEWithLogitsLoss()(outputs, targets)
        loss.backward()
        optim.step()

model.eval()




print("Training complete. Saving model...")

save_directory = ".results/model"
model.save_pretrained(save_directory)

print("Model saved.")