cgr28 commited on
Commit
bdab8dd
·
1 Parent(s): d572bb4

satisfy milestone-2 requirements

Browse files
Files changed (4) hide show
  1. .github/workflows/sync_to_huggingface_hub.yml +20 -0
  2. README.md +30 -6
  3. app.py +28 -0
  4. main.py +0 -3
.github/workflows/sync_to_huggingface_hub.yml ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Sync to Hugging Face hub
2
+ on:
3
+ push:
4
+ branches: [main]
5
+
6
+ # to run this workflow manually from the Actions tab
7
+ workflow_dispatch:
8
+
9
+ jobs:
10
+ sync-to-hub:
11
+ runs-on: ubuntu-latest
12
+ steps:
13
+ - uses: actions/checkout@v3
14
+ with:
15
+ fetch-depth: 0
16
+ lfs: true
17
+ - name: Push to hub
18
+ env:
19
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
20
+ run: git push --force https://cgr28:[email protected]/spaces/cgr28/cs482-project main
README.md CHANGED
@@ -1,9 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
1
  # cs482-project
2
- ## Instructions
3
- 1. Setup Docker using this video [https://youtu.be/pTFZFxd4hOI](https://youtu.be/pTFZFxd4hOI)
4
 
5
- ## Screenshot
6
- ### Running from container
 
 
 
 
 
 
 
 
7
  ![Docker Container](docker-container.png)
8
- ### Running user docker run
9
- ![Docker Run](docker-run.png)
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Cs482 Project
3
+ emoji: 💻
4
+ colorFrom: pink
5
+ colorTo: purple
6
+ sdk: streamlit
7
+ sdk_version: 1.17.0
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
  # cs482-project
 
 
13
 
14
+ ## milestone-1
15
+
16
+ ### Instructions
17
+
18
+ 1. Setup Docker using this [video](https://youtu.be/pTFZFxd4hOI)
19
+
20
+ ### Screenshot
21
+
22
+ #### Running from container
23
+
24
  ![Docker Container](docker-container.png)
25
+
26
+ #### Running user docker run
27
+
28
+ ![Docker Run](docker-run.png)
29
+
30
+ ## milestone-2
31
+
32
+ [HF Space](https://huggingface.co/spaces/cgr28/cs482-project)
33
+
app.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, RobertaForSequenceClassification
3
+ import numpy as np
4
+ import torch
5
+
6
+ st.title("CS482 Project Sentiment Analysis")
7
+
8
+ text = st.text_area(label="Text to be analyzed", value="This sentiment analysis app is great!")
9
+
10
+ selected_model = st.radio(label="Model", options=["Model 1", "Model 2"])
11
+
12
+ analyze_button = st.button(label="Analyze")
13
+
14
+ st.markdown("**:red[Sentiment:]**")
15
+
16
+ if analyze_button:
17
+ if selected_model=="Model 1":
18
+ tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
19
+ model = RobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-emotion")
20
+ else:
21
+ tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
22
+ model = RobertaForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
23
+ inputs = tokenizer(text, return_tensors="pt")
24
+ with torch.no_grad():
25
+ logits = model(**inputs).logits
26
+ prediction_id = logits.argmax().item()
27
+ results = model.config.id2label[prediction_id]
28
+ st.write(results)
main.py DELETED
@@ -1,3 +0,0 @@
1
- import torch
2
- x = torch.rand(5, 3)
3
- print(x)