import streamlit as st from datasets import load_dataset from spacy_streamlit import visualize_textcat, visualize_ner import spacy_streamlit import pandas as pd from transformers import pipeline import spacy # we write text st.title('Skills Extraction Project') # we write markdown st.markdown('This NLP project helps you extract skills from job description. You just need to paste a job description and directly access the required skills for a specific vacancy. Save time!', unsafe_allow_html=False) @st.cache(allow_output_mutation=True) def get_model(): return spacy.load("en_pipeline") nlp = get_model() raw_text = st.text_area(label="Insert your job description") #if raw_text != "": docx = nlp(raw_text) spacy_streamlit.visualize_ner(docx, labels = nlp.get_pipe('ner').labels)