temp / app.py
chaman420's picture
Update app.py
d5c8765 verified
raw
history blame
369 Bytes
import streamlit as st
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("nakodanei/Blue-Orchid-2x7b")
model = AutoModelForCausalLM.from_pretrained("nakodanei/Blue-Orchid-2x7b")
pipe = pipeline('sentiment-analysis')
text = st.text_area('enter some text!')
if text:
out = pipe(text)
st.json(out)