chandan00000 commited on
Commit
3ca2896
·
verified ·
1 Parent(s): 76ca0db

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +118 -0
  2. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, UploadFile, File, HTTPException
2
+ from fastapi.responses import JSONResponse
3
+ from transformers import ViTFeatureExtractor, ViTForImageClassification
4
+ from PIL import Image
5
+ import requests
6
+ import io
7
+ import warnings
8
+ import gradio as gr
9
+ import threading
10
+ import uvicorn
11
+
12
+ warnings.filterwarnings('ignore')
13
+
14
+ # Load the pre-trained Vision Transformer model and feature extractor
15
+ model_name = "google/vit-base-patch16-224"
16
+ feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
17
+ model = ViTForImageClassification.from_pretrained(model_name)
18
+
19
+ # API key for the nutrition information
20
+ api_key = 'TTnVMFxStvcP3sUXow/sGw==CnAQfUtuozhAAO5M'
21
+
22
+ app = FastAPI()
23
+
24
+ def identify_image(image: Image.Image):
25
+ """Identify the food item in the image."""
26
+ inputs = feature_extractor(images=image, return_tensors="pt")
27
+ outputs = model(**inputs)
28
+ logits = outputs.logits
29
+ predicted_class_idx = logits.argmax(-1).item()
30
+ predicted_label = model.config.id2label[predicted_class_idx]
31
+ food_name = predicted_label.split(',')[0]
32
+ return food_name
33
+
34
+ def get_calories(food_name: str):
35
+ """Get the calorie information of the identified food item."""
36
+ api_url = f'https://api.api-ninjas.com/v1/nutrition?query={food_name}'
37
+ response = requests.get(api_url, headers={'X-Api-Key': api_key})
38
+ if response.status_code == requests.codes.ok:
39
+ return response.json()
40
+ else:
41
+ raise HTTPException(status_code=response.status_code, detail=response.text)
42
+
43
+ @app.post("/identify_and_get_nutrition")
44
+ async def identify_and_get_nutrition(file: UploadFile = File(...)):
45
+ image_data = await file.read()
46
+ image = Image.open(io.BytesIO(image_data))
47
+ food_name = identify_image(image)
48
+ nutrition_info = get_calories(food_name)
49
+ if len(nutrition_info) == 0:
50
+ return JSONResponse(content={"message": "No nutritional information found."}, status_code=404)
51
+ return nutrition_info
52
+
53
+ # Gradio Interface
54
+ def gradio_interface(image_file):
55
+ image = Image.open(image_file)
56
+ food_name = identify_image(image)
57
+ nutrition_info = get_calories(food_name)
58
+ if len(nutrition_info) == 0:
59
+ return "No nutritional information found."
60
+
61
+ nutrition_data = nutrition_info[0]
62
+ table = f"""
63
+ <table border="1" style="width: 100%; border-collapse: collapse;">
64
+ <tr><th colspan="4" style="text-align: center;"><b>Nutrition Facts</b></th></tr>
65
+ <tr><td colspan="4" style="text-align: center;"><b>Food Name: {nutrition_data['name']}</b></td></tr>
66
+ <tr>
67
+ <td style="text-align: left;"><b>Calories</b></td><td style="text-align: right;">{nutrition_data['calories']}</td>
68
+ <td style="text-align: left;"><b>Serving Size (g)</b></td><td style="text-align: right;">{nutrition_data['serving_size_g']}</td>
69
+ </tr>
70
+ <tr>
71
+ <td style="text-align: left;"><b>Total Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_total_g']}</td>
72
+ <td style="text-align: left;"><b>Saturated Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_saturated_g']}</td>
73
+ </tr>
74
+ <tr>
75
+ <td style="text-align: left;"><b>Protein (g)</b></td><td style="text-align: right;">{nutrition_data['protein_g']}</td>
76
+ <td style="text-align: left;"><b>Sodium (mg)</b></td><td style="text-align: right;">{nutrition_data['sodium_mg']}</td>
77
+ </tr>
78
+ <tr>
79
+ <td style="text-align: left;"><b>Potassium (mg)</b></td><td style="text-align: right;">{nutrition_data['potassium_mg']}</td>
80
+ <td style="text-align: left;"><b>Cholesterol (mg)</b></td><td style="text-align: right;">{nutrition_data['cholesterol_mg']}</td>
81
+ </tr>
82
+ <tr>
83
+ <td style="text-align: left;"><b>Total Carbohydrates (g)</b></td><td style="text-align: right;">{nutrition_data['carbohydrates_total_g']}</td>
84
+ <td style="text-align: left;"><b>Fiber (g)</b></td><td style="text-align: right;">{nutrition_data['fiber_g']}</td>
85
+ </tr>
86
+ <tr>
87
+ <td style="text-align: left;"><b>Sugar (g)</b></td><td style="text-align: right;">{nutrition_data['sugar_g']}</td>
88
+ <td></td><td></td>
89
+ </tr>
90
+ </table>
91
+ """
92
+ return table
93
+
94
+ iface = gr.Interface(
95
+ fn=gradio_interface,
96
+ inputs=gr.Image(type="filepath"),
97
+ outputs="html",
98
+ title="Food Identification and Nutrition Info",
99
+ description="Upload an image of food to get nutritional information.",
100
+ allow_flagging="never" # Disable flagging
101
+ )
102
+
103
+ def run_gradio():
104
+ iface.launch(share=True)
105
+
106
+ def run_fastapi():
107
+ uvicorn.run(app, host="0.0.0.0", port=8000)
108
+
109
+ if __name__ == "__main__":
110
+ # Run Gradio and FastAPI in separate threads
111
+ gradio_thread = threading.Thread(target=run_gradio)
112
+ fastapi_thread = threading.Thread(target=run_fastapi)
113
+
114
+ gradio_thread.start()
115
+ fastapi_thread.start()
116
+
117
+ gradio_thread.join()
118
+ fastapi_thread.join()
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio
2
+ transformers
3
+ torch
4
+ torchvision
5
+ requests
6
+ python-dotenv