File size: 2,421 Bytes
246135d
 
 
 
 
 
 
 
612a64b
 
6c66e7f
 
246135d
 
612a64b
246135d
 
 
 
 
 
 
612a64b
246135d
 
 
 
 
 
 
612a64b
246135d
 
 
 
 
 
 
612a64b
53fd1b9
246135d
 
 
612a64b
246135d
b5c3986
 
246135d
 
612a64b
246135d
b5c3986
612a64b
246135d
 
 
 
 
 
b5c3986
246135d
612a64b
246135d
 
 
 
 
 
612a64b
246135d
 
 
612a64b
246135d
 
612a64b
246135d
 
 
 
 
 
 
 
53fd1b9
246135d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import nltk
import numpy as np
from nltk.stem.porter import PorterStemmer
import json
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import random
import gradio as gr

nltk.download('punkt')

with open('dataset.json', 'r') as file:
    dataset = json.load(file)

class NeuralNetwork(nn.Module):
  def __init__(self, input_size, hidden_size, num_classes):
    super(NeuralNetwork, self).__init__()
    self.l1 = nn.Linear(input_size, hidden_size)
    self.l2 = nn.Linear(hidden_size, hidden_size)
    self.l3 = nn.Linear(hidden_size, num_classes)
    self.relu = nn.ReLU()

  def forward(self, x):
    out = self.l1(x)
    out = self.relu(out)
    out = self.l2(out)
    out = self.relu(out)
    out = self.l3(out)
    return out

data = torch.load('model_chatbot.pth', map_location=torch.device('cpu'))
input_size = data["input_size"]
hidden_size = data["hidden_size"]
output_size = data["output_size"]
all_words = data["all_words"]
tags = data["tags"]
model_state = data["model_state"]

device = torch.device('cpu')
model = NeuralNetwork(input_size, hidden_size, output_size).to(device)
model.load_state_dict(model_state)
model.eval()

# Fungsi untuk tokenisasi, stemming, dan bag-of-words
stemmer = PorterStemmer()

def tokenize(sentence):
    return nltk.word_tokenize(sentence)

def stem(word):
    return stemmer.stem(word.lower())

def bag_of_words(tokenized_sentence, all_words):
    tokenized_sentence = [stem(w) for w in tokenized_sentence]
    bag = np.zeros(len(all_words), dtype=np.float32)
    for idx, w in enumerate(all_words):
        if w in tokenized_sentence:
            bag[idx] = 1.0

    return bag

# Fungsi prediksi
def predict(sentence):
    sentence = tokenize(sentence)
    X = bag_of_words(sentence, all_words)
    X = X.reshape(1, X.shape[0])
    X = torch.from_numpy(X).to(device)

    output = model(X)
    _, predicted = torch.max(output, dim=1)
    tag = tags[predicted.item()]

    probs = torch.softmax(output, dim=1)
    prob = probs[0][predicted.item()]

    if prob.item() > 0.75:
        for intent in dataset['intents']:
            if tag == intent["tag"]:
                return random.choice(intent['response'])
    else:
        return "Saya tidak mengerti pertanyaan Anda."

# Buat interface Gradio
iface = gr.Interface(fn=predict, inputs="text", outputs="text", title="Chatbot Hukum Pajak")

# Jalankan interface
iface.launch(share=True)