chatbot_pajak / app.py
chandra10's picture
Update spaces
c9473db
raw
history blame
3.08 kB
import nltk
import numpy as np
from nltk.stem.porter import PorterStemmer
import json
import torch
import torch.nn as nn
import random
import gradio as gr
nltk.download('punkt')
with open('dataset.json', 'r') as file:
dataset = json.load(file)
class NeuralNetwork(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNetwork, self).__init__()
self.l1 = nn.Linear(input_size, hidden_size)
self.l2 = nn.Linear(hidden_size, hidden_size)
self.l3 = nn.Linear(hidden_size, num_classes)
self.relu = nn.ReLU()
def forward(self, x):
out = self.l1(x)
out = self.relu(out)
out = self.l2(out)
out = self.relu(out)
out = self.l3(out)
return out
data = torch.load('model_chatbot.pth', map_location=torch.device('cpu'))
input_size = data["input_size"]
hidden_size = data["hidden_size"]
output_size = data["output_size"]
all_words = data["all_words"]
tags = data["tags"]
model_state = data["model_state"]
device = torch.device('cpu')
model = NeuralNetwork(input_size, hidden_size, output_size).to(device)
model.load_state_dict(model_state)
model.eval()
# Fungsi untuk tokenisasi, stemming, dan bag-of-words
stemmer = PorterStemmer()
def tokenize(sentence):
return nltk.word_tokenize(sentence)
def stem(word):
return stemmer.stem(word.lower())
def bag_of_words(tokenized_sentence, all_words):
tokenized_sentence = [stem(w) for w in tokenized_sentence]
bag = np.zeros(len(all_words), dtype=np.float32)
for idx, w in enumerate(all_words):
if w in tokenized_sentence:
bag[idx] = 1.0
return bag
# Fungsi prediksi
def predict(sentence):
sentence = tokenize(sentence)
X = bag_of_words(sentence, all_words)
X = X.reshape(1, X.shape[0])
X = torch.from_numpy(X).to(device)
output = model(X)
_, predicted = torch.max(output, dim=1)
tag = tags[predicted.item()]
probs = torch.softmax(output, dim=1)
prob = probs[0][predicted.item()]
if prob.item() > 0.75:
for intent in dataset['intents']:
if tag == intent["tag"]:
return random.choice(intent['response'])
else:
return "Saya tidak mengerti pertanyaan Anda."
# Buat interface Gradio
iface = gr.Interface(
fn=predict,
inputs=gr.Textbox(placeholder="Silahkan masukkan pertanyaan...."),
outputs="text",
title="Chatbot Hukum Pajak",
description="Selamat Datang di chatbot pajak.\n\nChatbot ini bisa hanya bisa menjawab beberapa pertanyaan dasar tentang hukum pajak dari pasal 21, pasal 22, pasal 23, dan pasal 24.\n\nContoh pertanyaan seperti berikut:\n\n1. Apa itu pajak?\n\n2. Apa itu pajak penghasilan?\n\n3. Bisakah kamu jelaskan apa itu pajak penghasilan berdasarkan pasal 22?\n\n4. dan lain-lain.\n\nJika ingin melihat bagaimana chatbot ini dilatih, kalian bisa melihat dataset sederhana yang saya buat:\n\nhttps://huggingface.co/chandra10/chatbot_pajak/resolve/main/dataset.json\n\nModel chatbot ini belum sempurna. Jadi, silahkan beri saran di community")
# Jalankan interface
iface.launch(share=True)