chandra10's picture
p
8e8c85c
import gradio as gr
from transformers import AutoTokenizer, pipeline
# Load tokenizer dan model dari Hugging Face Hub
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
nlp = pipeline("question-answering", model="chandra10/question_tax_indo", tokenizer=tokenizer)
# Definisikan fungsi untuk Gradio
def answer_question(context, question):
"""
Menjawab pertanyaan berdasarkan konteks yang diberikan.
"""
result = nlp(question=question, context=context)
return result['answer']
# Buat interface Gradio
iface = gr.Interface(
fn=answer_question,
inputs=[
gr.Textbox(lines=5, placeholder="Masukkan konteks di sini..."),
gr.Textbox(lines=2, placeholder="Masukkan pertanyaan di sini...")
],
outputs="text",
title="Aplikasi Question Answering Pajak",
description="Masukkan konteks dan pertanyaan pajak untuk mendapatkan jawaban."
)
# Jalankan interface Gradio
iface.launch()