chandra10 commited on
Commit
ac94883
·
1 Parent(s): 4db56af

Update space

Browse files
Files changed (2) hide show
  1. app.py +25 -59
  2. requirements.txt +3 -1
app.py CHANGED
@@ -1,63 +1,29 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
 
 
 
59
  )
60
 
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, pipeline
3
+
4
+ # Load tokenizer dan model dari Hugging Face Hub
5
+ tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
6
+ nlp = pipeline("question-answering", model="chandra10/results", tokenizer=tokenizer)
7
+
8
+ # Definisikan fungsi untuk Gradio
9
+ def answer_question(context, question):
10
+ """
11
+ Menjawab pertanyaan berdasarkan konteks yang diberikan.
12
+ """
13
+ result = nlp(question=question, context=context)
14
+ return result['answer']
15
+
16
+ # Buat interface Gradio
17
+ iface = gr.Interface(
18
+ fn=answer_question,
19
+ inputs=[
20
+ gr.Textbox(lines=5, placeholder="Masukkan konteks di sini..."),
21
+ gr.Textbox(lines=2, placeholder="Masukkan pertanyaan di sini...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  ],
23
+ outputs="text",
24
+ title="Aplikasi Question Answering Pajak",
25
+ description="Masukkan konteks dan pertanyaan pajak untuk mendapatkan jawaban."
26
  )
27
 
28
+ # Jalankan interface Gradio
29
+ iface.launch()
 
requirements.txt CHANGED
@@ -1 +1,3 @@
1
- huggingface_hub==0.22.2
 
 
 
1
+ huggingface_hub==0.22.2
2
+ gradio
3
+ transformers