import gradio as gr from transformers import AutoTokenizer, pipeline # Load tokenizer dan model dari Hugging Face Hub tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") nlp = pipeline("question-answering", model="chandra10/question_tax_indo", tokenizer=tokenizer) # Definisikan fungsi untuk Gradio def answer_question(context, question): """ Menjawab pertanyaan berdasarkan konteks yang diberikan. """ result = nlp(question=question, context=context) return result['answer'] # Buat interface Gradio iface = gr.Interface( fn=answer_question, inputs=[ gr.Textbox(lines=5, placeholder="Masukkan konteks di sini..."), gr.Textbox(lines=2, placeholder="Masukkan pertanyaan di sini...") ], outputs="text", title="Aplikasi Question Answering Pajak", description="Masukkan konteks dan pertanyaan pajak untuk mendapatkan jawaban." ) # Jalankan interface Gradio iface.launch()