Spaces:
Running
Running
import gradio as gr | |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
name = "chanelcolgate/trocr-base-printed_captcha_ocr" | |
model = VisionEncoderDecoderModel.from_pretrained(name) | |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed") | |
def process_image(image): | |
# prepare image | |
pixel_values = processor(image, return_tensors="pt").pixel_values | |
# generate (no beam search) | |
generated_ids = model.generate(pixel_values) | |
# decode | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return generated_text | |
title = "Interactive demo: Captcha OCR" | |
description = "Demo tracuumasothue captcha" | |
interface = gr.Interface(fn=process_image, | |
inputs="image", | |
examples=[f"examples/captcha-{i}.png" for i in range(10)], | |
outputs="text", | |
title=title, | |
description=description).launch() |