pq / app.py
changxin's picture
Update app.py
7a7caa7
raw
history blame
4.29 kB
import gradio as gr
import pulp
import pandas as pd
import openpyxl
import requests
w_style="""
<style>
footer {visibility: hidden; }
</style>
"""
html_code='''
<iframe src="https://web.powerva.microsoft.com/environments/Default-51a58d6c-4fcf-4b75-8608-d00bf7f244d5/bots/new_bot_830e155fc862429e89683426b31c9bd5/webchat" height="500" frameborder="1" style="width:100%"></iframe>
'''
ht_text='''
<iframe width="800" height="800" frameborder="0" scrolling="no" src="https://dyrscomcn-my.sharepoint.com/personal/huangcaiguang_dyrs_com_cn/_layouts/15/Doc.aspx?sourcedoc={6d3da844-5b54-473b-a32a-08659600d015}&action=embedview&AllowTyping=True&ActiveCell='业绩'!A1&wdInConfigurator=True&wdInConfigurator=True&edesNext=false&ejss=false"></iframe>
'''
demo = gr.Blocks()
def fx1(x):
return f"欢迎练习Gradio, {x}!"
def fx2(x,y):
m=pulp.LpProblem()
x=list(map(int,x.split(',')))
t=[pulp.LpVariable('t'+str(i),cat=pulp.LpBinary) for i in range(len(x))]
m+=pulp.lpDot(x,t)
m+=(pulp.lpDot(x,t)==y)
m.solve()
resu={'data':[x[i] for i in range(len(t)) if pulp.value(t[i])]}
return resu
def fx3(x):
df=pd.read_excel(x,header=0,engine='openpyxl')
return df
def fx4(x):
url_s="https://tts.baidu.com/text2audio?tex="+x+"&cuid=baike&lan=ZH&ie=utf-8&ctp=1&pdt=301&vol=9&rate=32&per=0"
return "点击音频文件 [voice]("+url_s+")"
def fx5():
return html_code
def fx7(input_path,input_path2):
input_img = load_img(input_path)
input_img2 = load_img(input_path2)
hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
stylized_image = hub_model(tf.constant(input_img), tf.constant(input_img2))[0]
pre_img = tensor_to_image(stylized_image)
return pre_img
with demo:
gr.Markdown(
"""
# WEB APP测试应用!
![执一以为天下式](https://pbihub.cn/uploads/images/201809/23/44/n6xk1x6UnN.gif#pic_center).
""")
with gr.Tabs():
with gr.TabItem("测试1"):
text_input = gr.Textbox(placeholder='请输入测试字符串,如"畅心"',label="请输入测试内容",show_label=True)
text_output = gr.Textbox(label="输出结果",show_label=True)
tj_button = gr.Button("提交>>")
with gr.TabItem("凑数"):
val_input = [gr.Textbox(placeholder='请输入凑数序列,如"1,3,5,10,16,54,32,48,6,7"',label="请输入待凑数序列",show_label=True),gr.Number(value=80,label="请输入凑数和值",show_label=True)]
json_output = gr.JSON(label="输出运算结果",show_label=True)
cs_button = gr.Button("开始凑数>>")
with gr.TabItem("文件交互"):
file_input = gr.File(file_count="single",label="请选择需要读取的excel文件",show_label=True)
table_output = gr.Dataframe(label="输出读取的表格数据",show_label=True)
dq_button = gr.Button("开始读取>>")
with gr.TabItem("TTS"):
TS_input = gr.Textbox(placeholder='请输入测试字符串,如"欢迎测试字符串转语音功能模块"',label="请输入测试内容",show_label=True)
audio_output = gr.Markdown(label="点击生成音频文件",show_label=True)
tts_button = gr.Button("开始转换>>")
with gr.TabItem("Power Virtual Agents"):
pva_button = gr.Button("调用机器人对话>>")
pva_output=gr.HTML(label="机器人聊天窗口",show_label=True)
with gr.TabItem("Excel365测试"):
gr.HTML(value=ht_text,label="在线版演示",show_label=True)
with gr.TabItem("风格迁移"):
qy_input=[gr.Image(label="待转换图片",type="filepath"),gr.Image(label="风格图片",type="filepath")]
qy_output=gr.Image(type="auto", label="输出")
qy_button = gr.Button("开始迁移>>")
tj_button.click(fx1, inputs=text_input, outputs=text_output)
cs_button.click(fx2, inputs=val_input, outputs=json_output,api_name="ghqj")
dq_button.click(fx3, inputs=file_input, outputs=table_output)
tts_button.click(fx4, inputs=TS_input, outputs=audio_output)
pva_button.click(fx5, inputs=[],outputs=pva_output)
qy_button.click(fx7,inputs=qy_input,outputs=qy_output)
demo.launch()