import gradio as gr
import pulp
import pandas as pd
import openpyxl
import requests
import os
os.system('pip install paddlepaddle')
os.system('pip install paddleocr')
from paddleocr import PaddleOCR, draw_ocr
from PIL import Image
import torch
import re
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
html_code='''
'''
ht_text='''
'''
demo = gr.Blocks(css='''
#chedan {-webkit-transition-duration: 0.4s; transition-duration: 0.4s; border-radius: 40%}
#chedan:hover {background-color: #4CAF50; color: white;}
#chedan:active {background-color: #3e8e41; box-shadow: 0 5px #666; transform: translateY(4px);}
''')
def fx1(x):
return f"欢迎练习Gradio, {x}!"
def fx2(x,y):
m=pulp.LpProblem()
x=list(map(int,x.split(',')))
t=[pulp.LpVariable('t'+str(i),cat=pulp.LpBinary) for i in range(len(x))]
m+=pulp.lpDot(x,t)
m+=(pulp.lpDot(x,t)==y)
m.solve()
resu={'data':[x[i] for i in range(len(t)) if pulp.value(t[i])]}
return resu
def fx3(x):
df=pd.read_excel(x,header=0,engine='openpyxl')
return df
def fx4(x):
url_s="https://tts.baidu.com/text2audio?tex="+x+"&cuid=baike&lan=ZH&ie=utf-8&ctp=1&pdt=301&vol=9&rate=32&per=0"
return "点击音频文件 [voice]("+url_s+")"
def fx5():
return html_code
def fx6(img, lang):
ocr = PaddleOCR(use_angle_cls=True, lang={'中文':'ch','英文':'en','法文':'fr','德文':'german','韩文':'korean','日文':'japan'}[lang],use_gpu=False)
img_path = img.name
result = ocr.ocr(img_path, cls=True)
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores,
font_path='simfang.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
return 'result.jpg',list(zip(txts))
def fx7(x,y):
res=re.findall(r'{0}'.format(y),x)
return res
def fx8(x,y,z):
res=re.sub(r'{0}'.format(x),y,z)
return res
def plot(v, a):
g = 9.81
theta = a / 180 * 3.14
tmax = ((2 * v) * np.sin(theta)) / g
timemat = tmax * np.linspace(0, 1, 40)[:, None]
x = (v * timemat) * np.cos(theta)
y = ((v * timemat) * np.sin(theta)) - ((0.5 * g) * (timemat**2))
fig = plt.figure()
plt.scatter(x=x, y=y, marker=".")
plt.xlim(0, 100)
plt.ylim(0, 60)
return fig
def fx9(x):
pd.options.plotting.backend='matplotlib'
plt.close('all')
ax = x.plot(x='数据1',y='数据2',kind='bar',title='chinese word error!', color=["red","green","purple"])
ax.table(cellText=df.values,colLabels=df.columns,loc='bottom',colLoc='center')
return ax.get_figure()
with demo:
gr.Markdown(
"""
#
WEB APP测试应用!

""")
with gr.Tabs():
with gr.TabItem("测试1"):
text_input = gr.Textbox(placeholder='请输入测试字符串,如"畅心"',label="请输入测试内容",show_label=True)
text_output = gr.Textbox(label="输出结果",show_label=True)
tj_button = gr.Button("提交>>",elem_id="chedan")
with gr.TabItem("凑数"):
val_input = [gr.Textbox(placeholder='请输入凑数序列,如"1,3,5,10,16,54,32,48,6,7"',label="请输入待凑数序列",show_label=True),gr.Number(value=80,label="请输入凑数和值",show_label=True)]
json_output = gr.JSON(label="输出运算结果",show_label=True)
cs_button = gr.Button("开始凑数>>")
with gr.TabItem("文件交互"):
file_input = gr.File(file_count="single",label="请选择需要读取的excel文件",show_label=True)
table_output = gr.Dataframe(label="输出读取的表格数据",show_label=True)
dq_button = gr.Button("开始读取>>")
with gr.TabItem("TTS"):
TS_input = gr.Textbox(placeholder='请输入测试字符串,如"欢迎测试字符串转语音功能模块"',label="请输入测试内容",show_label=True)
audio_output = gr.Markdown(label="点击生成音频文件",show_label=True)
tts_button = gr.Button("开始转换>>")
with gr.TabItem("Power Virtual Agents"):
pva_button = gr.Button("调用机器人对话>>")
pva_output=gr.HTML(label="机器人聊天窗口",show_label=True)
with gr.TabItem("Excel365测试"):
gr.HTML(value=ht_text,label="在线版演示",show_label=True)
with gr.TabItem("OCR识别"):
ocr_input=[gr.Image(type='file', label='请提供你需要识别的照片'),gr.Dropdown(choices=['中文','英文','法文','德文','韩文','日文'], type="value", default='中文', label='请选择需要识别的语言')]
ocr_output=[gr.Image(type='file', label='识别结果'),gr.Dataframe(label="识别信息",show_label=True)]
ocr_button = gr.Button("开始ocr识别")
with gr.TabItem("正则处理"):
with gr.Row():
with gr.Column():
gr.Markdown(' 正则匹配')
zz1_input = [gr.Textbox(placeholder='请输入测试字符串,如"畅心语文100,数学666,英语95.7"',label="请输入测试内容"),gr.Textbox(placeholder='请输入正则表达式,如"\d+"',label="请输入正则表达式")]
zz1_output = gr.Dataframe(label="输出正则匹配数据",show_label=True)
zz1_button = gr.Button("开始正则处理>>")
with gr.Column():
gr.Markdown(' 正则替换')
zz2_input = [gr.Textbox(placeholder='输入正则表达式,如"\d+"',label="输入正则表达式"),gr.Textbox(placeholder='正则匹配对象替换为啥',label="输入替换为的字符串"),gr.Textbox(placeholder='待替换对象',label="输入原始字符串")]
zz2_output = gr.Textbox(label="输出",show_label=True)
zz2_button = gr.Button("开始正则替换>>")
with gr.TabItem("图表展示1"):
with gr.Row():
with gr.Group():
speed = gr.Slider(1, 30, 25, label="Speed")
angle = gr.Slider(0, 90, 45, label="Angle")
output = gr.Plot()
tb_button = gr.Button("Run")
with gr.Box():
pd_input=gr.Dataframe(headers=['数据1','数据2'],value=[[42,10],[68,15]],datatype='number',label="可编辑数据框",interactive=True)
pd_output=gr.Plot()
pd_button=gr.Button("编辑测试")
tj_button.click(fx1, inputs=text_input, outputs=text_output)
cs_button.click(fx2, inputs=val_input, outputs=json_output,api_name="ghqj")
dq_button.click(fx3, inputs=file_input, outputs=table_output,api_name="df")
tts_button.click(fx4, inputs=TS_input, outputs=audio_output)
pva_button.click(fx5, inputs=[],outputs=pva_output)
ocr_button.click(fx6,inputs=ocr_input,outputs=ocr_output,api_name="ocr")
zz1_button.click(fx7,inputs=zz1_input,outputs=zz1_output,api_name="zzpp")
zz2_button.click(fx8,inputs=zz2_input,outputs=zz2_output,api_name="zzth")
tb_button.click(plot, [speed, angle], output)
pd_button.click(fx9,pd_input,pd_output)
demo.launch(enable_queue=True)