chansung commited on
Commit
d7a7630
·
1 Parent(s): 6934201

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -1
app.py CHANGED
@@ -239,10 +239,22 @@ def sepia(input_img):
239
  fig = draw_plot(pred_img, seg)
240
  return fig
241
 
 
 
 
 
 
 
 
 
 
242
  demo = gr.Interface(sepia,
243
  gr.inputs.Image(type="filepath"),
244
  outputs=['plot'],
245
  examples=["ADE_val_00000001.jpeg"],
246
- allow_flagging='never')
 
 
 
247
 
248
  demo.launch()
 
239
  fig = draw_plot(pred_img, seg)
240
  return fig
241
 
242
+ title = "SegFormer(ADE20k) in TensorFlow"
243
+ description = """
244
+
245
+ This is demo TensorFlow SegFormer from 🤗 `transformers` official package. The pre-trained model is optimized to segment scene specific images. We are currently using ONNX model converted from the TensorFlow based SegFormer to improve the latency. The average latency of an inference is 21 and 8 seconds for TensorFlow and ONNX converted models respectively (in Colab).
246
+
247
+ """
248
+
249
+ article = "Check out the [repository](https://github.com/deep-diver/segformer-tf-transformers) to find out how to make inference, finetune the model with custom dataset, and further information."
250
+
251
  demo = gr.Interface(sepia,
252
  gr.inputs.Image(type="filepath"),
253
  outputs=['plot'],
254
  examples=["ADE_val_00000001.jpeg"],
255
+ allow_flagging='never',
256
+ title=title,
257
+ description=description,
258
+ article=article)
259
 
260
  demo.launch()