Spaces:
Sleeping
Sleeping
upload 1683864255 model
Browse files- README.md +6 -7
- app.py +83 -0
- labels.txt +3 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.29.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Leaf Classification
|
3 |
+
emoji: π
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: indigo
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.29.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: apache-2.0
|
11 |
+
---
|
|
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tarfile
|
2 |
+
import wandb
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import tensorflow as tf
|
8 |
+
from transformers import ViTFeatureExtractor
|
9 |
+
|
10 |
+
PRETRAIN_CHECKPOINT = "google/vit-base-patch16-224-in21k"
|
11 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained(PRETRAIN_CHECKPOINT)
|
12 |
+
|
13 |
+
MODEL = None
|
14 |
+
|
15 |
+
RESOLTUION = 224
|
16 |
+
|
17 |
+
labels = []
|
18 |
+
|
19 |
+
with open(r"labels.txt", "r") as fp:
|
20 |
+
for line in fp:
|
21 |
+
labels.append(line[:-1])
|
22 |
+
|
23 |
+
def normalize_img(
|
24 |
+
img, mean=feature_extractor.image_mean, std=feature_extractor.image_std
|
25 |
+
):
|
26 |
+
img = img / 255
|
27 |
+
mean = tf.constant(mean)
|
28 |
+
std = tf.constant(std)
|
29 |
+
return (img - mean) / std
|
30 |
+
|
31 |
+
def preprocess_input(image):
|
32 |
+
image = np.array(image)
|
33 |
+
image = tf.convert_to_tensor(image)
|
34 |
+
|
35 |
+
image = tf.image.resize(image, (RESOLTUION, RESOLTUION))
|
36 |
+
image = normalize_img(image)
|
37 |
+
|
38 |
+
image = tf.transpose(
|
39 |
+
image, (2, 0, 1)
|
40 |
+
) # Since HF models are channel-first.
|
41 |
+
|
42 |
+
return {
|
43 |
+
"pixel_values": tf.expand_dims(image, 0)
|
44 |
+
}
|
45 |
+
|
46 |
+
def get_predictions(wb_token, image):
|
47 |
+
global MODEL
|
48 |
+
|
49 |
+
if MODEL is None:
|
50 |
+
wandb.login(key=wb_token)
|
51 |
+
wandb.init(project="tfx-vit-pipeline")
|
52 |
+
path = wandb.use_artifact('tfx-vit-pipeline/final_model:1683864255', type='model').download()
|
53 |
+
|
54 |
+
tar = tarfile.open(f"{path}/model.tar.gz")
|
55 |
+
tar.extractall(path=".")
|
56 |
+
|
57 |
+
MODEL = tf.keras.models.load_model("./model")
|
58 |
+
|
59 |
+
preprocessed_image = preprocess_input(image)
|
60 |
+
prediction = MODEL.predict(preprocessed_image)
|
61 |
+
probs = tf.nn.softmax(prediction['logits'], axis=1)
|
62 |
+
|
63 |
+
confidences = {labels[i]: float(probs[0][i]) for i in range(3)}
|
64 |
+
return confidences
|
65 |
+
|
66 |
+
with gr.Blocks() as demo:
|
67 |
+
gr.Markdown("## Simple demo for a Image Classification of the Beans Dataset with HF ViT model")
|
68 |
+
|
69 |
+
wb_token_if = gr.Textbox(interactive=True, label="Your Weight & Biases API Key")
|
70 |
+
|
71 |
+
with gr.Row():
|
72 |
+
image_if = gr.Image()
|
73 |
+
label_if = gr.Label(num_top_classes=3)
|
74 |
+
|
75 |
+
classify_if = gr.Button()
|
76 |
+
|
77 |
+
classify_if.click(
|
78 |
+
get_predictions,
|
79 |
+
[wb_token_if, image_if],
|
80 |
+
label_if
|
81 |
+
)
|
82 |
+
|
83 |
+
demo.launch(debug=True)
|
labels.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
angular_leaf_spot
|
2 |
+
bean_rust
|
3 |
+
healthy
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
transformers
|
3 |
+
wandb
|