File size: 5,909 Bytes
20c0d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f274761
20c0d70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gradio as gr
from transformers import pipeline
import numpy as np
import pytesseract
import cv2
from PIL import Image
from evaluate import load
import librosa

asr = pipeline("automatic-speech-recognition", model="openai/whisper-base")
wer = load("wer")


def extract_text(image):
    result = pytesseract.image_to_data(image, output_type='dict')
    n_boxes = len(result['level'])
    data = {}
    k = 0
    for i in range(n_boxes):
        if result['conf'][i] >= 0.3 and result['text'][i] != '' and result['conf'][i] != -1:
            data[k] = {}
            (x, y, w, h) = (result['left'][i], result['top']
                            [i], result['width'][i], result['height'][i])
            data[k]["coordinates"] = (x, y, w, h)
            text, conf = result['text'][k], result['conf'][k]
            data[k]["text"] = text
            data[k]["conf"] = conf
            k += 1
    return data


def draw_rectangle(image, x, y, w, h, color=(0, 0, 255), thickness=2):
    image_array = np.array(image)
    image_array = cv2.cvtColor(image_array, cv2.COLOR_RGB2BGR)
    cv2.rectangle(image_array, (x, y), (x + w, y + h), color, thickness)
    return Image.fromarray(cv2.cvtColor(image_array, cv2.COLOR_BGR2RGB))


def transcribe(audio):
    if isinstance(audio, str):  # If audio is a file path
        y, sr = librosa.load(audio)
    elif isinstance(audio, tuple) and len(audio) == 2:  # If audio is (sampling_rate, raw_audio)
        sr, y = audio
        y = y.astype(np.float32)
    else:
        raise ValueError("Invalid input. Audio should be a file path or a tuple of (sampling_rate, raw_audio).")
    
    y /= np.max(np.abs(y))

    # Call your ASR (Automatic Speech Recognition) function here
    # For now, let's assume it's called 'asr'
    transcribed_text = asr({"sampling_rate": sr, "raw": y})["text"]
    
    return transcribed_text


def clean_transcription(transcription):
    text = transcription.lower()
    words = text.split()
    cleaned_words = [words[0]]
    for word in words[1:]:
        if word != cleaned_words[-1]:
            cleaned_words.append(word)
    return ' '.join(cleaned_words)


def match(refence, spoken):
    wer_score = wer.compute(references=[refence], predictions=[spoken])
    score = 1 - wer_score
    return score


def split_to_l(text, answer):
    l = len(answer.split(" "))
    text_words = text.split(" ")
    chunks = []
    indices = []
    for i in range(0, len(text_words), l):
        chunk = " ".join(text_words[i: i + l])
        chunks.append(chunk)
        indices.append(i)
    return chunks, indices, l


def reindex_data(data, index, l):
    reindexed_data = {}
    for i in range(l):
        original_index = index + i
        reindexed_data[i] = data[original_index]
    return reindexed_data


def process_image(im, data):
    im_array = np.array(im)
    hg, wg, _ = im_array.shape
    text_y = np.max([data[i]["coordinates"][1]
                    for i in range(len(data))])
    text_x = np.max([data[i]["coordinates"][0]
                    for i in range(len(data))])
    text_start_x = np.min([data[i]["coordinates"][0]
                           for i in range(len(data))])
    text_start_y = np.min([data[i]["coordinates"][1]
                           for i in range(len(data))])
    max_height = int(np.mean([data[i]["coordinates"][3]
                              for i in range(len(data))]))
    max_width = int(np.mean([data[i]["coordinates"][2]
                    for i in range(len(data))]))
    text = [data[i]["text"] for i in range(len(data))]
    wall = np.zeros((hg, wg, 3), np.uint8)

    wall[text_start_y:text_y + max_height, text_start_x:text_x + max_width] = \
        im_array[text_start_y:text_y + max_height,
                 text_start_x:text_x + max_width, :]

    for i in range(1, len(data)):
        x, y, w, h = data[i]["coordinates"]
        wall = draw_rectangle(wall, x, y, w, h)
    return wall


def run(stream, image):
    data = extract_text(image)
    im_text_ = [data[i]["text"] for i in range(len(data))]
    im_text = " ".join(im_text_)
    trns_text = transcribe(stream)
    chunks, index, l = split_to_l(im_text, trns_text)
    im_array = np.array(Image.open(image))
    data2 = None
    for i in range(len(chunks)):
        if match(chunks[i], trns_text) > 0.1:
            data2 = reindex_data(data, index[i], l)
            break
    if data2 is not None:
        return process_image(im_array, data2)
    else:
        return im_array

demo = gr.Blocks()


demo1 = gr.Interface(
    run,
    [gr.Audio(sources=["microphone"] , type="numpy"), gr.Image(
        type="filepath", label="Image")],
    gr.Image(type="pil", label="output Image"),
)
demo2 = gr.Interface(
    run,
    [gr.Audio(sources=["upload"]), gr.Image(
        type="filepath", label="Image")],
    gr.Image(type="pil", label="output Image")
)
with demo:
    gr.TabbedInterface([demo1, demo2],
                       ["Microphone", "Audio File"])

demo.launch()
"""
data = extract_text(im)
im_text_ = [data[i]["text"] for i in range(len(data))]
im_text = " ".join(im_text_)
trns_text = transcribe_wav("tmpmucht0kh.wav")
chunks, index, l = split_to_l(im_text, trns_text)
im_array = np.array(Image.open(im))
for i in range(len(chunks)):
    if match(chunks[i], trns_text) > 0.5:
        print(chunks[i])
        print(match(chunks[i], trns_text))
        print(index[i])
        print(l)
        print(im_array.shape)
        print(fuse_rectangles(im_array, data, index[i], l))

strem = "tmpq0eha4we.wav"
im = "the-king-and-three-sisters-around-the-world-stories-for-children.png"
text = "A KING AND THREE SISTERS"
che_text = "A KING AND THREE SISTERS"
print(match(text, che_text))
data = extract_text(im)
text_transcript = transcribe_wav(strem)
print(text_transcript)
im_text_ = [data[i]["text"] for i in range(len(data))]
im_text = " ".join(im_text_)
print(im_text)
wall = run(strem, im)
wall.show()"""