File size: 6,476 Bytes
798614c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
import requests
import tqdm as t
import re
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import pytesseract
from PIL import Image
from collections import deque

device = "cuda" if torch.cuda.is_available() else "cpu"

tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
model = AutoModelForTokenClassification.from_pretrained(
    "dslim/bert-base-NER")
summarizer = pipeline(
    "summarization", model="facebook/bart-large-cnn", device=device)

qa = pipeline("question-answering",
              model="deepset/roberta-base-squad2", device=device)


def extract_text(image):
    """
    Extracts text from an image using OCR.
    Args:
        image (PIL.Image.Image): Input image.
    Returns:
        dict: Extracted text with confidence and coordinates.
    Raises:
        ValueError: If the input image is not a PIL Image object.
    """

    result = pytesseract.image_to_data(image, output_type='dict')
    n_boxes = len(result['level'])
    data = {}
    k = 0
    for i in range(n_boxes):
        if result['conf'][i] >= 0.3 and result['text'][i] != '' and result['conf'][i] != -1:
            data[k] = {}
            (x, y, w, h) = (result['left'][i], result['top']
                            [i], result['width'][i], result['height'][i])
            data[k]["coordinates"] = (x, y, w, h)
            text, conf = result['text'][k], result['conf'][k]
            data[k]["text"] = text
            data[k]["conf"] = conf
            k += 1
    return data


def strong_entities(question):
    nlp = pipeline("ner", model=model, tokenizer=tokenizer)
    ner_results = nlp(question)
    search_terms = []
    current_term = ""
    for token in ner_results:
        if token["score"] >= 0.99:
            current_term += " " + token["word"]
        else:
            if current_term:
                search_terms.append(current_term.strip())
                current_term = ""
            search_terms.append(token["word"])
    if current_term:
        search_terms.append(current_term.strip())
    print(search_terms[0].split())
    return search_terms[0].split()


def wiki_search(question):
    search_terms = strong_entities(question)
    URL = "https://en.wikipedia.org/w/api.php"
    corpus = []

    for term in set(search_terms):  # Removing duplicates
        SEARCHPAGE = term
        params = {
            "action": "query",
            "format": "json",
            "titles": SEARCHPAGE,
            "prop": "extracts",
            "explaintext": True
        }

        response = requests.get(URL, params=params)
        try:
            if response.status_code == 200:
                data = response.json()
                for page_id, page_data in t.tqdm(data["query"]["pages"].items()):
                    if "extract" in page_data:  # Check if extract exists
                        corpus.append(page_data["extract"])
            else:
                print("Failed to retrieve data:", response.status_code)
        except Exception as e:
            print("Failed to retrieve data:", e)

    final_corpus = []
    for text in corpus:
        sections = re.split("\n\n\n== |==\n\n", text)
        for section in sections:
            if len(section.split()) >= 5:
                final_corpus.append(section)
    return " ".join(final_corpus[0:1])


def semantic_search(corpus, question):
    model = SentenceTransformer("all-MiniLM-L6-v2")
    question_embedding = model.encode(question)

    max_similarity = -1
    most_similar_doc = None
    print(type(corpus[0]))
    print(corpus)
    for doc in t.tqdm(corpus):
        if len(doc.split()) >= 130:
            doc_summary = summarizer(
                doc, max_length=130, min_length=30, do_sample=False)
            if len(doc_summary) > 0 and "summary_text" in doc_summary[0]:
                summarized_doc = doc_summary[0]["summary_text"]
            else:
                summarized_doc = doc
        else:
            summarized_doc = doc

        doc_embedding = model.encode(summarized_doc)
        similarity = cosine_similarity(
            [question_embedding], [doc_embedding])[0][0]

        if similarity > max_similarity:
            max_similarity = similarity
            most_similar_doc = summarized_doc

    return most_similar_doc, similarity


def dm(q, a, corpus, new_q, max_history_size=5):

    history = deque(maxlen=max_history_size)
    history.append({"question": q, "answer": a, "corpus": corpus})

    best_corpus_index = None
    max_similarity = -1

    for i in range(len(history)):
        _, q_similarity = semantic_search([history[i]["corpus"]], new_q)
        _, a_similarity = semantic_search(
            [history[i]["corpus"]], history[i]["answer"])
        similarity = max(q_similarity, a_similarity)
        if similarity > max_similarity:
            max_similarity = similarity
            best_corpus_index = i

    if best_corpus_index is not None:
        return history[best_corpus_index]["corpus"]
    else:
        return corpus


def first_corp(data, question, botton=False):

    if botton:
        corpus = wiki_search(question)
        texts = [data[i]["text"] for i in range(len(data))]
        text = " ".join(texts)
        corpus = [cp + " " + text for cp in corpus]
    else:
        texts = [data[i]["text"] for i in range(len(data))]
        text = " ".join(texts)
        corpus = [text]
    return " ".join(corpus)


def Qa(image, new_q, internet_access=False):
    old_q = ["how are you?"]
    old_a = ["I am fine, thank you."]
    im_text = extract_text(image)
    if im_text:  # Check if text is extracted
        old_corpus = [first_corp(im_text, old_q[-1], botton=internet_access)]
    else:
        old_corpus = None

    if internet_access:
        if not old_corpus:
            # Pass None as corpus to trigger internet access
            corpus = dm(old_q[-1], old_a[-1], None, new_q)
        else:
            # Pass old_corpus for internet access
            corpus = dm(old_q[-1], old_a[-1], old_corpus, new_q)
    else:
        corpus = old_corpus[0] if old_corpus else None

    a = qa(question=new_q, context=corpus)
    old_q.append(new_q)
    old_a.append(a["answer"])
    old_corpus.append(corpus)

    old_conversations = "\n".join(
        f"Q: {q}\nA: {a}" for q, a in zip(old_q, old_a))

    return a["answer"], old_conversations