El_profesor / recite_module.py
chaouch's picture
doc_bot
798614c
raw
history blame
8.79 kB
import gradio as gr
from transformers import pipeline
import numpy as np
import pytesseract
import cv2
from PIL import Image
from evaluate import load
import librosa
from transformers.models.whisper.english_normalizer import BasicTextNormalizer
asr = pipeline("automatic-speech-recognition", model="openai/whisper-base")
wer = load("wer")
def extract_text(image):
"""
Extracts text from an image using OCR.
Args:
image (PIL.Image.Image): Input image.
Returns:
dict: Extracted text with confidence and coordinates.
Raises:
ValueError: If the input image is not a PIL Image object.
"""
result = pytesseract.image_to_data(image, output_type='dict')
n_boxes = len(result['level'])
data = {}
k = 0
for i in range(n_boxes):
if result['conf'][i] >= 0.3 and result['text'][i] != '' and result['conf'][i] != -1:
data[k] = {}
(x, y, w, h) = (result['left'][i], result['top']
[i], result['width'][i], result['height'][i])
data[k]["coordinates"] = (x, y, w, h)
text, conf = result['text'][k], result['conf'][k]
data[k]["text"] = text
data[k]["conf"] = conf
k += 1
return data
def draw_rectangle(image, x, y, w, h, color=(0, 0, 255), thickness=2):
"""
Draws a rectangle on the given image.
Args:
image (PIL.Image.Image): Input image.
x (int): x-coordinate of the top-left corner of the rectangle.
y (int): y-coordinate of the top-left corner of the rectangle.
w (int): Width of the rectangle.
h (int): Height of the rectangle.
color (tuple, optional): Color of the rectangle in RGB format.
thickness (int, optional): Thickness of the rectangle's border.
Returns:
PIL.Image.Image: Image with the rectangle drawn on it.
Raises:
ValueError: If the input image is not a PIL Image object.
"""
image_array = np.array(image)
image_array = cv2.cvtColor(image_array, cv2.COLOR_RGB2BGR)
cv2.rectangle(image_array, (x, y), (x + w, y + h), color, thickness)
return Image.fromarray(cv2.cvtColor(image_array, cv2.COLOR_BGR2RGB))
def transcribe(audio):
"""
Transcribes audio into text using ASR.
Parameters:
audio (str or tuple): Audio source.
Returns:
str: Transcribed text.
Raises:
ValueError: If the input audio is not valid.
"""
if not isinstance(audio, (str, tuple)):
raise ValueError(
"Invalid input. Audio should be either a file path or a tuple of (sampling_rate, raw_audio).")
if isinstance(audio, str): # If audio is a file path
y, sr = librosa.load(audio)
# If audio is (sampling_rate, raw_audio)
elif isinstance(audio, tuple) and len(audio) == 2:
sr, y = audio
y = y.astype(np.float32)
else:
raise ValueError(
"Invalid input. Audio should be a file path or a tuple of (sampling_rate, raw_audio).")
y /= np.max(np.abs(y))
transcribed_text = asr(
{"sampling_rate": sr, "raw": y})["text"]
return transcribed_text
def clean_transcription(transcription):
"""
Cleans the transcription by removing consecutive duplicate words.
Args:
transcription (str): Input transcription.
Returns:
str: Cleaned transcription.
Raises:
ValueError: If the input transcription is not a string.
"""
if not isinstance(transcription, str):
raise ValueError("Invalid input. Transcription should be a string.")
text = transcription.lower()
words = text.split()
cleaned_words = [words[0]]
for word in words[1:]:
if word != cleaned_words[-1]:
cleaned_words.append(word)
return ' '.join(cleaned_words)
def match(refence, spoken):
"""
Calculates the match score between a reference and spoken string.
Args:
reference (str): Reference string.
spoken (str): Spoken string.
Returns:
float: Match score between 0 and 1.
Raises:
ValueError: If either reference or spoken is not a string.
"""
if not isinstance(refence, str) or not isinstance(spoken, str):
raise ValueError(
"Invalid input. Reference and spoken should be strings.")
if spoken == "":
return 0
normalizer = BasicTextNormalizer()
spoken = clean_transcription(spoken)
predection = normalizer(spoken)
refence = normalizer(refence)
wer_score = wer.compute(references=[refence], predictions=[predection])
score = 1 - wer_score
return score
def split_to_l(text, answer):
"""
Splits the given text into chunks of length 'l' based on the answer.
Args:
text (str): The input text to be split.
answer (str): The answer used to determine the chunk size.
Returns:
tuple: A tuple containing the chunks of text, the indices of the chunks, and the length of each chunk.
"""
if not isinstance(text, str) or not isinstance(answer, str):
raise ValueError("Invalid input. Text and answer should be strings.")
l = len(answer.split(" "))
text_words = text.split(" ")
chunks = []
indices = []
for i in range(0, len(text_words), l):
chunk = " ".join(text_words[i: i + l])
chunks.append(chunk)
indices.append(i)
return chunks, indices, l
def reindex_data(data, index, l):
"""
Reindexes a dictionary with keys ranging from 0 to l-1.
Args:
data (dict): Original dictionary.
index (int): Starting index for reindexing.
l (int): Length of the reindexed dictionary.
Returns:
dict: Reindexed dictionary.
Raises:
ValueError: If the input data is not a dictionary, or if index or l are not integers.
"""
if not isinstance(data, dict) or not isinstance(index, int) or not isinstance(l, int):
raise ValueError(
"Invalid input. Data should be a dictionary, index and l should be integers.")
reindexed_data = {}
for i in range(l):
original_index = index + i
reindexed_data[i] = data[original_index]
return reindexed_data
def process_image(im, data):
"""
Processes an image by extracting text regions.
Args:
im (PIL.Image.Image): Input image.
data (dict): Data containing information about text regions.
Returns:
numpy.ndarray: Processed image with text regions highlighted.
Raises:
ValueError: If the input image is not a PIL Image object or if the data is not a dictionary.
"""
im_array = np.array(im)
hg, wg, _ = im_array.shape
text_y = np.max([data[i]["coordinates"][1]
for i in range(len(data))])
text_x = np.max([data[i]["coordinates"][0]
for i in range(len(data))])
text_start_x = np.min([data[i]["coordinates"][0]
for i in range(len(data))])
text_start_y = np.min([data[i]["coordinates"][1]
for i in range(len(data))])
max_height = int(np.mean([data[i]["coordinates"][3]
for i in range(len(data))]))
max_width = int(np.mean([data[i]["coordinates"][2]
for i in range(len(data))]))
wall = np.zeros((hg, wg, 3), np.uint8)
wall[text_start_y:text_y + max_height, text_start_x:text_x + max_width] = \
im_array[text_start_y:text_y + max_height,
text_start_x:text_x + max_width, :]
for i in range(1, len(data)):
x, y, w, h = data[i]["coordinates"]
wall = draw_rectangle(wall, x, y, w, h)
return wall
def run(stream, image):
"""
Processes an image and transcribes audio.
Args:
stream (str or tuple): Audio source.
image (PIL.Image.Image): Input image.
Returns:
numpy.ndarray or PIL.Image.Image: Processed image data.
Raises:
ValueError: If the input stream is not a valid type or if the input image is not a PIL Image object.
"""
if not isinstance(stream, (str, tuple)):
raise ValueError(
"Invalid input. Stream should be either a file path or a tuple of (sampling_rate, raw_audio).")
data = extract_text(image)
im_text_ = [data[i]["text"] for i in range(len(data))]
im_text = " ".join(im_text_)
trns_text = transcribe(stream)
chunks, index, l = split_to_l(im_text, trns_text)
im_array = np.array(Image.open(image))
data2 = None
for i in range(len(chunks)):
if match(chunks[i], trns_text) >= 0.10:
data2 = reindex_data(data, index[i], l)
break
if data2 is not None:
return process_image(im_array, data2)
else:
return im_array