Spaces:
Runtime error
Runtime error
#### FACE_ENHANCER.PY CODE START ### | |
import os | |
import cv2 | |
import torch | |
import gfpgan | |
from PIL import Image | |
from upscaler.RealESRGAN import RealESRGAN | |
from upscaler.codeformer import CodeFormerEnhancer | |
def gfpgan_runner(img, model): | |
_, imgs, _ = model.enhance(img, paste_back=True, has_aligned=True) | |
return imgs[0] | |
def realesrgan_runner(img, model): | |
img = model.predict(img) | |
return img | |
def codeformer_runner(img, model): | |
img = model.enhance(img) | |
return img | |
supported_enhancers = { | |
"CodeFormer": ("./assets/pretrained_models/codeformer.onnx", codeformer_runner), | |
"GFPGAN": ("./assets/pretrained_models/GFPGANv1.4.pth", gfpgan_runner), | |
"REAL-ESRGAN 2x": ("./assets/pretrained_models/RealESRGAN_x2.pth", realesrgan_runner), | |
"REAL-ESRGAN 4x": ("./assets/pretrained_models/RealESRGAN_x4.pth", realesrgan_runner), | |
"REAL-ESRGAN 8x": ("./assets/pretrained_models/RealESRGAN_x8.pth", realesrgan_runner) | |
} | |
cv2_interpolations = ["LANCZOS4", "CUBIC", "NEAREST"] | |
def get_available_enhancer_names(): | |
available = [] | |
for name, data in supported_enhancers.items(): | |
path = os.path.join(os.path.abspath(os.path.dirname(__file__)), data[0]) | |
if os.path.exists(path): | |
available.append(name) | |
return available | |
def load_face_enhancer_model(name='GFPGAN', device="cpu"): | |
assert name in get_available_enhancer_names() + cv2_interpolations, f"Face enhancer {name} unavailable." | |
if name in supported_enhancers.keys(): | |
model_path, model_runner = supported_enhancers.get(name) | |
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path) | |
if name == 'CodeFormer': | |
model = CodeFormerEnhancer(model_path=model_path, device=device) | |
elif name == 'GFPGAN': | |
model = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=device) | |
elif name == 'REAL-ESRGAN 2x': | |
model = RealESRGAN(device, scale=2) | |
model.load_weights(model_path, download=False) | |
elif name == 'REAL-ESRGAN 4x': | |
model = RealESRGAN(device, scale=4) | |
model.load_weights(model_path, download=False) | |
elif name == 'REAL-ESRGAN 8x': | |
model = RealESRGAN(device, scale=8) | |
model.load_weights(model_path, download=False) | |
elif name == 'LANCZOS4': | |
model = None | |
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_LANCZOS4) | |
elif name == 'CUBIC': | |
model = None | |
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_CUBIC) | |
elif name == 'NEAREST': | |
model = None | |
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_NEAREST) | |
else: | |
model = None | |
return (model, model_runner) | |
#### FACE_EHNANCER.PY CODE END ### | |
#### FACE_SWAPPER.PY CODE START ### | |
import time | |
import torch | |
import onnx | |
import cv2 | |
import onnxruntime | |
import numpy as np | |
from tqdm import tqdm | |
import torch.nn as nn | |
from onnx import numpy_helper | |
from skimage import transform as trans | |
import torchvision.transforms.functional as F | |
import torch.nn.functional as F | |
from utils import mask_crop, laplacian_blending | |
arcface_dst = np.array( | |
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], | |
[41.5493, 92.3655], [70.7299, 92.2041]], | |
dtype=np.float32) | |
def estimate_norm(lmk, image_size=112, mode='arcface'): | |
assert lmk.shape == (5, 2) | |
assert image_size % 112 == 0 or image_size % 128 == 0 | |
if image_size % 112 == 0: | |
ratio = float(image_size) / 112.0 | |
diff_x = 0 | |
else: | |
ratio = float(image_size) / 128.0 | |
diff_x = 8.0 * ratio | |
dst = arcface_dst * ratio | |
dst[:, 0] += diff_x | |
tform = trans.SimilarityTransform() | |
tform.estimate(lmk, dst) | |
M = tform.params[0:2, :] | |
return M | |
def norm_crop2(img, landmark, image_size=112, mode='arcface'): | |
M = estimate_norm(landmark, image_size, mode) | |
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) | |
return warped, M | |
class Inswapper(): | |
def __init__(self, model_file=None, batch_size=32, providers=['CPUExecutionProvider']): | |
self.model_file = model_file | |
self.batch_size = batch_size | |
model = onnx.load(self.model_file) | |
graph = model.graph | |
self.emap = numpy_helper.to_array(graph.initializer[-1]) | |
self.session_options = onnxruntime.SessionOptions() | |
self.session = onnxruntime.InferenceSession(self.model_file, sess_options=self.session_options, providers=providers) | |
def forward(self, imgs, latents): | |
preds = [] | |
for img, latent in zip(imgs, latents): | |
img = img / 255 | |
pred = self.session.run(['output'], {'target': img, 'source': latent})[0] | |
preds.append(pred) | |
def get(self, imgs, target_faces, source_faces): | |
imgs = list(imgs) | |
preds = [None] * len(imgs) | |
matrs = [None] * len(imgs) | |
for idx, (img, target_face, source_face) in enumerate(zip(imgs, target_faces, source_faces)): | |
matrix, blob, latent = self.prepare_data(img, target_face, source_face) | |
pred = self.session.run(['output'], {'target': blob, 'source': latent})[0] | |
pred = pred.transpose((0, 2, 3, 1))[0] | |
pred = np.clip(255 * pred, 0, 255).astype(np.uint8)[:, :, ::-1] | |
preds[idx] = pred | |
matrs[idx] = matrix | |
return (preds, matrs) | |
def prepare_data(self, img, target_face, source_face): | |
if isinstance(img, str): | |
img = cv2.imread(img) | |
aligned_img, matrix = norm_crop2(img, target_face.kps, 128) | |
blob = cv2.dnn.blobFromImage(aligned_img, 1.0 / 255, (128, 128), (0., 0., 0.), swapRB=True) | |
latent = source_face.normed_embedding.reshape((1, -1)) | |
latent = np.dot(latent, self.emap) | |
latent /= np.linalg.norm(latent) | |
return (matrix, blob, latent) | |
def batch_forward(self, img_list, target_f_list, source_f_list): | |
num_samples = len(img_list) | |
num_batches = (num_samples + self.batch_size - 1) // self.batch_size | |
for i in tqdm(range(num_batches), desc="Generating face"): | |
start_idx = i * self.batch_size | |
end_idx = min((i + 1) * self.batch_size, num_samples) | |
batch_img = img_list[start_idx:end_idx] | |
batch_target_f = target_f_list[start_idx:end_idx] | |
batch_source_f = source_f_list[start_idx:end_idx] | |
batch_pred, batch_matr = self.get(batch_img, batch_target_f, batch_source_f) | |
yield batch_pred, batch_matr | |
def paste_to_whole(foreground, background, matrix, mask=None, crop_mask=(0,0,0,0), blur_amount=0.1, erode_amount = 0.15, blend_method='linear'): | |
inv_matrix = cv2.invertAffineTransform(matrix) | |
fg_shape = foreground.shape[:2] | |
bg_shape = (background.shape[1], background.shape[0]) | |
foreground = cv2.warpAffine(foreground, inv_matrix, bg_shape, borderValue=0.0) | |
if mask is None: | |
mask = np.full(fg_shape, 1., dtype=np.float32) | |
mask = mask_crop(mask, crop_mask) | |
mask = cv2.warpAffine(mask, inv_matrix, bg_shape, borderValue=0.0) | |
else: | |
assert fg_shape == mask.shape[:2], "foreground & mask shape mismatch!" | |
mask = mask_crop(mask, crop_mask).astype('float32') | |
mask = cv2.warpAffine(mask, inv_matrix, (background.shape[1], background.shape[0]), borderValue=0.0) | |
_mask = mask.copy() | |
_mask[_mask > 0.05] = 1. | |
non_zero_points = cv2.findNonZero(_mask) | |
_, _, w, h = cv2.boundingRect(non_zero_points) | |
mask_size = int(np.sqrt(w * h)) | |
if erode_amount > 0: | |
kernel_size = max(int(mask_size * erode_amount), 1) | |
structuring_element = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size)) | |
mask = cv2.erode(mask, structuring_element) | |
if blur_amount > 0: | |
kernel_size = max(int(mask_size * blur_amount), 3) | |
if kernel_size % 2 == 0: | |
kernel_size += 1 | |
mask = cv2.GaussianBlur(mask, (kernel_size, kernel_size), 0) | |
mask = np.tile(np.expand_dims(mask, axis=-1), (1, 1, 3)) | |
if blend_method == 'laplacian': | |
composite_image = laplacian_blending(foreground, background, mask.clip(0,1), num_levels=4) | |
else: | |
composite_image = mask * foreground + (1 - mask) * background | |
return composite_image.astype("uint8").clip(0, 255) | |
#### FACE_SWAPPER.PY CODE END ### | |
#### FACE_ANALYSER.PY CODE START ### | |
import os | |
import cv2 | |
import numpy as np | |
from tqdm import tqdm | |
from utils import scale_bbox_from_center | |
detect_conditions = [ | |
"best detection", | |
"left most", | |
"right most", | |
"top most", | |
"bottom most", | |
"middle", | |
"biggest", | |
"smallest", | |
] | |
swap_options_list = [ | |
"All Face", | |
"Specific Face", | |
"Age less than", | |
"Age greater than", | |
"All Male", | |
"All Female", | |
"Left Most", | |
"Right Most", | |
"Top Most", | |
"Bottom Most", | |
"Middle", | |
"Biggest", | |
"Smallest", | |
] | |
def get_single_face(faces, method="best detection"): | |
total_faces = len(faces) | |
if total_faces == 1: | |
return faces[0] | |
print(f"{total_faces} face detected. Using {method} face.") | |
if method == "best detection": | |
return sorted(faces, key=lambda face: face["det_score"])[-1] | |
elif method == "left most": | |
return sorted(faces, key=lambda face: face["bbox"][0])[0] | |
elif method == "right most": | |
return sorted(faces, key=lambda face: face["bbox"][0])[-1] | |
elif method == "top most": | |
return sorted(faces, key=lambda face: face["bbox"][1])[0] | |
elif method == "bottom most": | |
return sorted(faces, key=lambda face: face["bbox"][1])[-1] | |
elif method == "middle": | |
return sorted(faces, key=lambda face: ( | |
(face["bbox"][0] + face["bbox"][2]) / 2 - 0.5) ** 2 + | |
((face["bbox"][1] + face["bbox"][3]) / 2 - 0.5) ** 2)[len(faces) // 2] | |
elif method == "biggest": | |
return sorted(faces, key=lambda face: (face["bbox"][2] - face["bbox"][0]) * (face["bbox"][3] - face["bbox"][1]))[-1] | |
elif method == "smallest": | |
return sorted(faces, key=lambda face: (face["bbox"][2] - face["bbox"][0]) * (face["bbox"][3] - face["bbox"][1]))[0] | |
def analyse_face(image, model, return_single_face=True, detect_condition="best detection", scale=1.0): | |
faces = model.get(image) | |
if scale != 1: # landmark-scale | |
for i, face in enumerate(faces): | |
landmark = face['kps'] | |
center = np.mean(landmark, axis=0) | |
landmark = center + (landmark - center) * scale | |
faces[i]['kps'] = landmark | |
if not return_single_face: | |
return faces | |
return get_single_face(faces, method=detect_condition) | |
def cosine_distance(a, b): | |
a /= np.linalg.norm(a) | |
b /= np.linalg.norm(b) | |
return 1 - np.dot(a, b) | |
def get_analysed_data(face_analyser, image_sequence, source_data, swap_condition="All face", detect_condition="left most", scale=1.0): | |
if swap_condition != "Specific Face": | |
source_path, age = source_data | |
source_image = cv2.imread(source_path) | |
analysed_source = analyse_face(source_image, face_analyser, return_single_face=True, detect_condition=detect_condition, scale=scale) | |
else: | |
analysed_source_specifics = [] | |
source_specifics, threshold = source_data | |
for source, specific in zip(*source_specifics): | |
if source is None or specific is None: | |
continue | |
analysed_source = analyse_face(source, face_analyser, return_single_face=True, detect_condition=detect_condition, scale=scale) | |
analysed_specific = analyse_face(specific, face_analyser, return_single_face=True, detect_condition=detect_condition, scale=scale) | |
analysed_source_specifics.append([analysed_source, analysed_specific]) | |
analysed_target_list = [] | |
analysed_source_list = [] | |
whole_frame_eql_list = [] | |
num_faces_per_frame = [] | |
total_frames = len(image_sequence) | |
curr_idx = 0 | |
for curr_idx, frame_path in tqdm(enumerate(image_sequence), total=total_frames, desc="Analysing face data"): | |
frame = cv2.imread(frame_path) | |
analysed_faces = analyse_face(frame, face_analyser, return_single_face=False, detect_condition=detect_condition, scale=scale) | |
n_faces = 0 | |
for analysed_face in analysed_faces: | |
if swap_condition == "All Face": | |
analysed_target_list.append(analysed_face) | |
analysed_source_list.append(analysed_source) | |
whole_frame_eql_list.append(frame_path) | |
n_faces += 1 | |
elif swap_condition == "Age less than" and analysed_face["age"] < age: | |
analysed_target_list.append(analysed_face) | |
analysed_source_list.append(analysed_source) | |
whole_frame_eql_list.append(frame_path) | |
n_faces += 1 | |
elif swap_condition == "Age greater than" and analysed_face["age"] > age: | |
analysed_target_list.append(analysed_face) | |
analysed_source_list.append(analysed_source) | |
whole_frame_eql_list.append(frame_path) | |
n_faces += 1 | |
elif swap_condition == "All Male" and analysed_face["gender"] == 1: | |
analysed_target_list.append(analysed_face) | |
analysed_source_list.append(analysed_source) | |
whole_frame_eql_list.append(frame_path) | |
n_faces += 1 | |
elif swap_condition == "All Female" and analysed_face["gender"] == 0: | |
analysed_target_list.append(analysed_face) | |
analysed_source_list.append(analysed_source) | |
whole_frame_eql_list.append(frame_path) | |
n_faces += 1 | |
elif swap_condition == "Specific Face": | |
for analysed_source, analysed_specific in analysed_source_specifics: | |
distance = cosine_distance(analysed_specific["embedding"], analysed_face["embedding"]) | |
if distance < threshold: | |
analysed_target_list.append(analysed_face) | |
analysed_source_list.append(analysed_source) | |
whole_frame_eql_list.append(frame_path) | |
n_faces += 1 | |
if swap_condition == "Left Most": | |
analysed_face = get_single_face(analysed_faces, method="left most") | |
analysed_target_list.append(analysed_face) | |
analysed_source_list.append(analysed_source) | |
whole_frame_eql_list.append(frame_path) | |
n_faces += 1 | |
elif swap_condition == "Right Most": | |
analysed_face = get_single_face(analysed_faces, method="right most") | |
analysed_target_list.append(analysed_face) | |
analysed_source_list.append(analysed_source) | |
whole_frame_eql_list.append(frame_path) | |
n_faces += 1 | |
elif swap_condition == "Top Most": | |
analysed_face = get_single_face(analysed_faces, method="top most") | |
analysed_target_list.append(analysed_face) | |
analysed_source_list.append(analysed_source) | |
whole_frame_eql_list.append(frame_path) | |
n_faces += 1 | |
elif swap_condition == "Bottom Most": | |
analysed_face = get_single_face(analysed_faces, method="bottom most") | |
analysed_target_list.append(analysed_face) | |
analysed_source_list.append(analysed_source) | |
whole_frame_eql_list.append(frame_path) | |
n_faces += 1 | |
elif swap_condition == "Middle": | |
analysed_face = get_single_face(analysed_faces, method="middle") | |
analysed_target_list.append(analysed_face) | |
analysed_source_list.append(analysed_source) | |
whole_frame_eql_list.append(frame_path) | |
n_faces += 1 | |
elif swap_condition == "Biggest": | |
analysed_face = get_single_face(analysed_faces, method="biggest") | |
analysed_target_list.append(analysed_face) | |
analysed_source_list.append(analysed_source) | |
whole_frame_eql_list.append(frame_path) | |
n_faces += 1 | |
elif swap_condition == "Smallest": | |
analysed_face = get_single_face(analysed_faces, method="smallest") | |
analysed_target_list.append(analysed_face) | |
analysed_source_list.append(analysed_source) | |
whole_frame_eql_list.append(frame_path) | |
n_faces += 1 | |
num_faces_per_frame.append(n_faces) | |
return analysed_target_list, analysed_source_list, whole_frame_eql_list, num_faces_per_frame | |
#### FACE_ANALYSER.PY CODE END ### | |
#### UTILS.PY CODE START ### | |
import os | |
import cv2 | |
import time | |
import glob | |
import shutil | |
import platform | |
import datetime | |
import subprocess | |
import numpy as np | |
from threading import Thread | |
from moviepy.editor import VideoFileClip, ImageSequenceClip | |
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip | |
logo_image = cv2.imread("./assets/images/logo.png", cv2.IMREAD_UNCHANGED) | |
quality_types = ["poor", "low", "medium", "high", "best"] | |
bitrate_quality_by_resolution = { | |
240: {"poor": "300k", "low": "500k", "medium": "800k", "high": "1000k", "best": "1200k"}, | |
360: {"poor": "500k","low": "800k","medium": "1200k","high": "1500k","best": "2000k"}, | |
480: {"poor": "800k","low": "1200k","medium": "2000k","high": "2500k","best": "3000k"}, | |
720: {"poor": "1500k","low": "2500k","medium": "4000k","high": "5000k","best": "6000k"}, | |
1080: {"poor": "2500k","low": "4000k","medium": "6000k","high": "7000k","best": "8000k"}, | |
1440: {"poor": "4000k","low": "6000k","medium": "8000k","high": "10000k","best": "12000k"}, | |
2160: {"poor": "8000k","low": "10000k","medium": "12000k","high": "15000k","best": "20000k"} | |
} | |
crf_quality_by_resolution = { | |
240: {"poor": 45, "low": 35, "medium": 28, "high": 23, "best": 20}, | |
360: {"poor": 35, "low": 28, "medium": 23, "high": 20, "best": 18}, | |
480: {"poor": 28, "low": 23, "medium": 20, "high": 18, "best": 16}, | |
720: {"poor": 23, "low": 20, "medium": 18, "high": 16, "best": 14}, | |
1080: {"poor": 20, "low": 18, "medium": 16, "high": 14, "best": 12}, | |
1440: {"poor": 18, "low": 16, "medium": 14, "high": 12, "best": 10}, | |
2160: {"poor": 16, "low": 14, "medium": 12, "high": 10, "best": 8} | |
} | |
def get_bitrate_for_resolution(resolution, quality): | |
available_resolutions = list(bitrate_quality_by_resolution.keys()) | |
closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution)) | |
return bitrate_quality_by_resolution[closest_resolution][quality] | |
def get_crf_for_resolution(resolution, quality): | |
available_resolutions = list(crf_quality_by_resolution.keys()) | |
closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution)) | |
return crf_quality_by_resolution[closest_resolution][quality] | |
def get_video_bitrate(video_file): | |
ffprobe_cmd = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-show_entries', | |
'stream=bit_rate', '-of', 'default=noprint_wrappers=1:nokey=1', video_file] | |
result = subprocess.run(ffprobe_cmd, stdout=subprocess.PIPE) | |
kbps = max(int(result.stdout) // 1000, 10) | |
return str(kbps) + 'k' | |
def trim_video(video_path, output_path, start_frame, stop_frame): | |
video_name, _ = os.path.splitext(os.path.basename(video_path)) | |
trimmed_video_filename = video_name + "_trimmed" + ".mp4" | |
temp_path = os.path.join(output_path, "trim") | |
os.makedirs(temp_path, exist_ok=True) | |
trimmed_video_file_path = os.path.join(temp_path, trimmed_video_filename) | |
video = VideoFileClip(video_path, fps_source="fps") | |
fps = video.fps | |
start_time = start_frame / fps | |
duration = (stop_frame - start_frame) / fps | |
bitrate = get_bitrate_for_resolution(min(*video.size), "high") | |
trimmed_video = video.subclip(start_time, start_time + duration) | |
trimmed_video.write_videofile( | |
trimmed_video_file_path, codec="libx264", audio_codec="aac", bitrate=bitrate, | |
) | |
trimmed_video.close() | |
video.close() | |
return trimmed_video_file_path | |
def open_directory(path=None): | |
if path is None: | |
return | |
try: | |
os.startfile(path) | |
except: | |
subprocess.Popen(["xdg-open", path]) | |
class StreamerThread(object): | |
def __init__(self, src=0): | |
self.capture = cv2.VideoCapture(src) | |
self.capture.set(cv2.CAP_PROP_BUFFERSIZE, 2) | |
self.FPS = 1 / 30 | |
self.FPS_MS = int(self.FPS * 1000) | |
self.thread = None | |
self.stopped = False | |
self.frame = None | |
def start(self): | |
self.thread = Thread(target=self.update, args=()) | |
self.thread.daemon = True | |
self.thread.start() | |
def stop(self): | |
self.stopped = True | |
self.thread.join() | |
print("stopped") | |
def update(self): | |
while not self.stopped: | |
if self.capture.isOpened(): | |
(self.status, self.frame) = self.capture.read() | |
time.sleep(self.FPS) | |
class ProcessBar: | |
def __init__(self, bar_length, total, before="โฌ", after="๐จ"): | |
self.bar_length = bar_length | |
self.total = total | |
self.before = before | |
self.after = after | |
self.bar = [self.before] * bar_length | |
self.start_time = time.time() | |
def get(self, index): | |
total = self.total | |
elapsed_time = time.time() - self.start_time | |
average_time_per_iteration = elapsed_time / (index + 1) | |
remaining_iterations = total - (index + 1) | |
estimated_remaining_time = remaining_iterations * average_time_per_iteration | |
self.bar[int(index / total * self.bar_length)] = self.after | |
info_text = f"({index+1}/{total}) {''.join(self.bar)} " | |
info_text += f"(ETR: {int(estimated_remaining_time // 60)} min {int(estimated_remaining_time % 60)} sec)" | |
return info_text | |
def add_logo_to_image(img, logo=logo_image): | |
logo_size = int(img.shape[1] * 0.1) | |
logo = cv2.resize(logo, (logo_size, logo_size)) | |
if logo.shape[2] == 4: | |
alpha = logo[:, :, 3] | |
else: | |
alpha = np.ones_like(logo[:, :, 0]) * 255 | |
padding = int(logo_size * 0.1) | |
roi = img.shape[0] - logo_size - padding, img.shape[1] - logo_size - padding | |
for c in range(0, 3): | |
img[roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c] = ( | |
alpha / 255.0 | |
) * logo[:, :, c] + (1 - alpha / 255.0) * img[ | |
roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c | |
] | |
return img | |
def split_list_by_lengths(data, length_list): | |
split_data = [] | |
start_idx = 0 | |
for length in length_list: | |
end_idx = start_idx + length | |
sublist = data[start_idx:end_idx] | |
split_data.append(sublist) | |
start_idx = end_idx | |
return split_data | |
def merge_img_sequence_from_ref(ref_video_path, image_sequence, output_file_name): | |
video_clip = VideoFileClip(ref_video_path, fps_source="fps") | |
fps = video_clip.fps | |
duration = video_clip.duration | |
total_frames = video_clip.reader.nframes | |
audio_clip = video_clip.audio if video_clip.audio is not None else None | |
edited_video_clip = ImageSequenceClip(image_sequence, fps=fps) | |
if audio_clip is not None: | |
edited_video_clip = edited_video_clip.set_audio(audio_clip) | |
bitrate = get_bitrate_for_resolution(min(*edited_video_clip.size), "high") | |
edited_video_clip.set_duration(duration).write_videofile( | |
output_file_name, codec="libx264", bitrate=bitrate, | |
) | |
edited_video_clip.close() | |
video_clip.close() | |
def scale_bbox_from_center(bbox, scale_width, scale_height, image_width, image_height): | |
# Extract the coordinates of the bbox | |
x1, y1, x2, y2 = bbox | |
# Calculate the center point of the bbox | |
center_x = (x1 + x2) / 2 | |
center_y = (y1 + y2) / 2 | |
# Calculate the new width and height of the bbox based on the scaling factors | |
width = x2 - x1 | |
height = y2 - y1 | |
new_width = width * scale_width | |
new_height = height * scale_height | |
# Calculate the new coordinates of the bbox, considering the image boundaries | |
new_x1 = center_x - new_width / 2 | |
new_y1 = center_y - new_height / 2 | |
new_x2 = center_x + new_width / 2 | |
new_y2 = center_y + new_height / 2 | |
# Adjust the coordinates to ensure the bbox remains within the image boundaries | |
new_x1 = max(0, new_x1) | |
new_y1 = max(0, new_y1) | |
new_x2 = min(image_width - 1, new_x2) | |
new_y2 = min(image_height - 1, new_y2) | |
# Return the scaled bbox coordinates | |
scaled_bbox = [new_x1, new_y1, new_x2, new_y2] | |
return scaled_bbox | |
def laplacian_blending(A, B, m, num_levels=7): | |
assert A.shape == B.shape | |
assert B.shape == m.shape | |
height = m.shape[0] | |
width = m.shape[1] | |
size_list = np.array([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192]) | |
size = size_list[np.where(size_list > max(height, width))][0] | |
GA = np.zeros((size, size, 3), dtype=np.float32) | |
GA[:height, :width, :] = A | |
GB = np.zeros((size, size, 3), dtype=np.float32) | |
GB[:height, :width, :] = B | |
GM = np.zeros((size, size, 3), dtype=np.float32) | |
GM[:height, :width, :] = m | |
gpA = [GA] | |
gpB = [GB] | |
gpM = [GM] | |
for i in range(num_levels): | |
GA = cv2.pyrDown(GA) | |
GB = cv2.pyrDown(GB) | |
GM = cv2.pyrDown(GM) | |
gpA.append(np.float32(GA)) | |
gpB.append(np.float32(GB)) | |
gpM.append(np.float32(GM)) | |
lpA = [gpA[num_levels-1]] | |
lpB = [gpB[num_levels-1]] | |
gpMr = [gpM[num_levels-1]] | |
for i in range(num_levels-1,0,-1): | |
LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i])) | |
LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i])) | |
lpA.append(LA) | |
lpB.append(LB) | |
gpMr.append(gpM[i-1]) | |
LS = [] | |
for la,lb,gm in zip(lpA,lpB,gpMr): | |
ls = la * gm + lb * (1.0 - gm) | |
LS.append(ls) | |
ls_ = LS[0] | |
for i in range(1,num_levels): | |
ls_ = cv2.pyrUp(ls_) | |
ls_ = cv2.add(ls_, LS[i]) | |
ls_ = ls_[:height, :width, :] | |
#ls_ = (ls_ - np.min(ls_)) * (255.0 / (np.max(ls_) - np.min(ls_))) | |
return ls_.clip(0, 255) | |
def mask_crop(mask, crop): | |
top, bottom, left, right = crop | |
shape = mask.shape | |
top = int(top) | |
bottom = int(bottom) | |
if top + bottom < shape[1]: | |
if top > 0: mask[:top, :] = 0 | |
if bottom > 0: mask[-bottom:, :] = 0 | |
left = int(left) | |
right = int(right) | |
if left + right < shape[0]: | |
if left > 0: mask[:, :left] = 0 | |
if right > 0: mask[:, -right:] = 0 | |
return mask | |
def create_image_grid(images, size=128): | |
num_images = len(images) | |
num_cols = int(np.ceil(np.sqrt(num_images))) | |
num_rows = int(np.ceil(num_images / num_cols)) | |
grid = np.zeros((num_rows * size, num_cols * size, 3), dtype=np.uint8) | |
for i, image in enumerate(images): | |
row_idx = (i // num_cols) * size | |
col_idx = (i % num_cols) * size | |
image = cv2.resize(image.copy(), (size,size)) | |
if image.dtype != np.uint8: | |
image = (image.astype('float32') * 255).astype('uint8') | |
if image.ndim == 2: | |
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) | |
grid[row_idx:row_idx + size, col_idx:col_idx + size] = image | |
return grid | |
#### UTILS.PY CODE END ### | |
#### APP.PY CODE END ### | |
import os | |
import spaces | |
import cv2 | |
import glob | |
import time | |
import torch | |
import shutil | |
import argparse | |
import platform | |
import datetime | |
import subprocess | |
import insightface | |
import onnxruntime | |
import numpy as np | |
import gradio as gr | |
import threading | |
import queue | |
from tqdm import tqdm | |
import concurrent.futures | |
from moviepy.editor import VideoFileClip | |
from nsfw_checker import NSFWChecker | |
from face_swapper import Inswapper, paste_to_whole | |
from face_analyser import detect_conditions, get_analysed_data, swap_options_list | |
from face_parsing import init_parsing_model, get_parsed_mask, mask_regions, mask_regions_to_list | |
from face_enhancer import get_available_enhancer_names, load_face_enhancer_model, cv2_interpolations | |
from utils import trim_video, StreamerThread, ProcessBar, open_directory, split_list_by_lengths, merge_img_sequence_from_ref, create_image_grid | |
## ------------------------------ USER ARGS ------------------------------ | |
parser = argparse.ArgumentParser(description="Swap-Mukham Face Swapper") | |
parser.add_argument("--out_dir", help="Default Output directory", default=os.getcwd()) | |
parser.add_argument("--batch_size", help="Gpu batch size", default=32) | |
parser.add_argument("--cuda", action="store_true", help="Enable cuda", default=False) | |
parser.add_argument( | |
"--colab", action="store_true", help="Enable colab mode", default=False | |
) | |
user_args = parser.parse_args() | |
## ------------------------------ DEFAULTS ------------------------------ | |
USE_COLAB = user_args.colab | |
USE_CUDA = user_args.cuda | |
DEF_OUTPUT_PATH = user_args.out_dir | |
BATCH_SIZE = int(user_args.batch_size) | |
WORKSPACE = None | |
OUTPUT_FILE = None | |
CURRENT_FRAME = None | |
STREAMER = None | |
DETECT_CONDITION = "best detection" | |
DETECT_SIZE = 640 | |
DETECT_THRESH = 0.6 | |
NUM_OF_SRC_SPECIFIC = 10 | |
MASK_INCLUDE = [ | |
"Skin", | |
"R-Eyebrow", | |
"L-Eyebrow", | |
"L-Eye", | |
"R-Eye", | |
"Nose", | |
"Mouth", | |
"L-Lip", | |
"U-Lip" | |
] | |
MASK_SOFT_KERNEL = 17 | |
MASK_SOFT_ITERATIONS = 10 | |
MASK_BLUR_AMOUNT = 0.1 | |
MASK_ERODE_AMOUNT = 0.15 | |
FACE_SWAPPER = None | |
FACE_ANALYSER = None | |
FACE_ENHANCER = None | |
FACE_PARSER = None | |
NSFW_DETECTOR = None | |
FACE_ENHANCER_LIST = ["NONE"] | |
FACE_ENHANCER_LIST.extend(get_available_enhancer_names()) | |
FACE_ENHANCER_LIST.extend(cv2_interpolations) | |
## ------------------------------ SET EXECUTION PROVIDER ------------------------------ | |
# Note: Non CUDA users may change settings here | |
PROVIDER = ["CPUExecutionProvider"] | |
if USE_CUDA: | |
available_providers = onnxruntime.get_available_providers() | |
if "CUDAExecutionProvider" in available_providers: | |
print("\n********** Running on CUDA **********\n") | |
PROVIDER = ["CUDAExecutionProvider", "CPUExecutionProvider"] | |
else: | |
USE_CUDA = False | |
print("\n********** CUDA unavailable running on CPU **********\n") | |
else: | |
USE_CUDA = False | |
print("\n********** Running on CPU **********\n") | |
device = "cuda" if USE_CUDA else "cpu" | |
EMPTY_CACHE = lambda: torch.cuda.empty_cache() if device == "cuda" else None | |
## ------------------------------ LOAD MODELS ------------------------------ | |
def load_face_analyser_model(name="buffalo_l"): | |
global FACE_ANALYSER | |
if FACE_ANALYSER is None: | |
FACE_ANALYSER = insightface.app.FaceAnalysis(name=name, providers=PROVIDER) | |
FACE_ANALYSER.prepare( | |
ctx_id=0, det_size=(DETECT_SIZE, DETECT_SIZE), det_thresh=DETECT_THRESH | |
) | |
def load_face_swapper_model(path="./assets/pretrained_models/inswapper_128.onnx"): | |
global FACE_SWAPPER | |
if FACE_SWAPPER is None: | |
batch = int(BATCH_SIZE) if device == "cuda" else 1 | |
FACE_SWAPPER = Inswapper(model_file=path, batch_size=batch, providers=PROVIDER) | |
def load_face_parser_model(path="./assets/pretrained_models/79999_iter.pth"): | |
global FACE_PARSER | |
if FACE_PARSER is None: | |
FACE_PARSER = init_parsing_model(path, device=device) | |
def load_nsfw_detector_model(path="./assets/pretrained_models/open-nsfw.onnx"): | |
global NSFW_DETECTOR | |
if NSFW_DETECTOR is None: | |
NSFW_DETECTOR = NSFWChecker(model_path=path, providers=PROVIDER) | |
load_face_analyser_model() | |
load_face_swapper_model() | |
## ------------------------------ MAIN PROCESS ------------------------------ | |
@spaces.GPU(duration=300, enable_queue=True) | |
def process( | |
input_type, | |
image_path, | |
video_path, | |
directory_path, | |
source_path, | |
output_path, | |
output_name, | |
keep_output_sequence, | |
condition, | |
age, | |
distance, | |
face_enhancer_name, | |
enable_face_parser, | |
mask_includes, | |
mask_soft_kernel, | |
mask_soft_iterations, | |
blur_amount, | |
erode_amount, | |
face_scale, | |
enable_laplacian_blend, | |
crop_top, | |
crop_bott, | |
crop_left, | |
crop_right, | |
*specifics, | |
): | |
global WORKSPACE | |
global OUTPUT_FILE | |
global PREVIEW | |
WORKSPACE, OUTPUT_FILE, PREVIEW = None, None, None | |
## ------------------------------ GUI UPDATE FUNC ------------------------------ | |
def ui_before(): | |
return ( | |
gr.update(visible=True, value=PREVIEW), | |
gr.update(interactive=False), | |
gr.update(interactive=False), | |
gr.update(visible=False), | |
) | |
def ui_after(): | |
return ( | |
gr.update(visible=True, value=PREVIEW), | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
gr.update(visible=False), | |
) | |
def ui_after_vid(): | |
return ( | |
gr.update(visible=False), | |
gr.update(interactive=True), | |
gr.update(interactive=True), | |
gr.update(value=OUTPUT_FILE, visible=True), | |
) | |
start_time = time.time() | |
total_exec_time = lambda start_time: divmod(time.time() - start_time, 60) | |
get_finsh_text = lambda start_time: f"โ๏ธ Completed in {int(total_exec_time(start_time)[0])} min {int(total_exec_time(start_time)[1])} sec." | |
## ------------------------------ PREPARE INPUTS & LOAD MODELS ------------------------------ | |
yield "### \n โ Loading NSFW detector model...", *ui_before() | |
load_nsfw_detector_model() | |
yield "### \n โ Loading face analyser model...", *ui_before() | |
load_face_analyser_model() | |
yield "### \n โ Loading face swapper model...", *ui_before() | |
load_face_swapper_model() | |
if face_enhancer_name != "NONE": | |
if face_enhancer_name not in cv2_interpolations: | |
yield f"### \n โ Loading {face_enhancer_name} model...", *ui_before() | |
FACE_ENHANCER = load_face_enhancer_model(name=face_enhancer_name, device=device) | |
else: | |
FACE_ENHANCER = None | |
if enable_face_parser: | |
yield "### \n โ Loading face parsing model...", *ui_before() | |
load_face_parser_model() | |
includes = mask_regions_to_list(mask_includes) | |
specifics = list(specifics) | |
half = len(specifics) // 2 | |
sources = specifics[:half] | |
specifics = specifics[half:] | |
if crop_top > crop_bott: | |
crop_top, crop_bott = crop_bott, crop_top | |
if crop_left > crop_right: | |
crop_left, crop_right = crop_right, crop_left | |
crop_mask = (crop_top, 511-crop_bott, crop_left, 511-crop_right) | |
def swap_process(image_sequence): | |
## ------------------------------ CONTENT CHECK ------------------------------ | |
yield "### \n โ Checking contents...", *ui_before() | |
nsfw = NSFW_DETECTOR.is_nsfw(image_sequence) | |
if nsfw: | |
message = "NSFW Content detected !!!" | |
yield f"### \n ๐ {message}", *ui_before() | |
assert not nsfw, message | |
return False | |
EMPTY_CACHE() | |
## ------------------------------ ANALYSE FACE ------------------------------ | |
yield "### \n โ Analysing face data...", *ui_before() | |
if condition != "Specific Face": | |
source_data = source_path, age | |
else: | |
source_data = ((sources, specifics), distance) | |
analysed_targets, analysed_sources, whole_frame_list, num_faces_per_frame = get_analysed_data( | |
FACE_ANALYSER, | |
image_sequence, | |
source_data, | |
swap_condition=condition, | |
detect_condition=DETECT_CONDITION, | |
scale=face_scale | |
) | |
## ------------------------------ SWAP FUNC ------------------------------ | |
yield "### \n โ Generating faces...", *ui_before() | |
preds = [] | |
matrs = [] | |
count = 0 | |
global PREVIEW | |
for batch_pred, batch_matr in FACE_SWAPPER.batch_forward(whole_frame_list, analysed_targets, analysed_sources): | |
preds.extend(batch_pred) | |
matrs.extend(batch_matr) | |
EMPTY_CACHE() | |
count += 1 | |
if USE_CUDA: | |
image_grid = create_image_grid(batch_pred, size=128) | |
PREVIEW = image_grid[:, :, ::-1] | |
yield f"### \n โ Generating face Batch {count}", *ui_before() | |
## ------------------------------ FACE ENHANCEMENT ------------------------------ | |
generated_len = len(preds) | |
if face_enhancer_name != "NONE": | |
yield f"### \n โ Upscaling faces with {face_enhancer_name}...", *ui_before() | |
for idx, pred in tqdm(enumerate(preds), total=generated_len, desc=f"Upscaling with {face_enhancer_name}"): | |
enhancer_model, enhancer_model_runner = FACE_ENHANCER | |
pred = enhancer_model_runner(pred, enhancer_model) | |
preds[idx] = cv2.resize(pred, (512,512)) | |
EMPTY_CACHE() | |
## ------------------------------ FACE PARSING ------------------------------ | |
if enable_face_parser: | |
yield "### \n โ Face-parsing mask...", *ui_before() | |
masks = [] | |
count = 0 | |
for batch_mask in get_parsed_mask(FACE_PARSER, preds, classes=includes, device=device, batch_size=BATCH_SIZE, softness=int(mask_soft_iterations)): | |
masks.append(batch_mask) | |
EMPTY_CACHE() | |
count += 1 | |
if len(batch_mask) > 1: | |
image_grid = create_image_grid(batch_mask, size=128) | |
PREVIEW = image_grid[:, :, ::-1] | |
yield f"### \n โ Face parsing Batch {count}", *ui_before() | |
masks = np.concatenate(masks, axis=0) if len(masks) >= 1 else masks | |
else: | |
masks = [None] * generated_len | |
## ------------------------------ SPLIT LIST ------------------------------ | |
split_preds = split_list_by_lengths(preds, num_faces_per_frame) | |
del preds | |
split_matrs = split_list_by_lengths(matrs, num_faces_per_frame) | |
del matrs | |
split_masks = split_list_by_lengths(masks, num_faces_per_frame) | |
del masks | |
## ------------------------------ PASTE-BACK ------------------------------ | |
yield "### \n โ Pasting back...", *ui_before() | |
def post_process(frame_idx, frame_img, split_preds, split_matrs, split_masks, enable_laplacian_blend, crop_mask, blur_amount, erode_amount): | |
whole_img_path = frame_img | |
whole_img = cv2.imread(whole_img_path) | |
blend_method = 'laplacian' if enable_laplacian_blend else 'linear' | |
for p, m, mask in zip(split_preds[frame_idx], split_matrs[frame_idx], split_masks[frame_idx]): | |
p = cv2.resize(p, (512,512)) | |
mask = cv2.resize(mask, (512,512)) if mask is not None else None | |
m /= 0.25 | |
whole_img = paste_to_whole(p, whole_img, m, mask=mask, crop_mask=crop_mask, blend_method=blend_method, blur_amount=blur_amount, erode_amount=erode_amount) | |
cv2.imwrite(whole_img_path, whole_img) | |
def concurrent_post_process(image_sequence, *args): | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
futures = [] | |
for idx, frame_img in enumerate(image_sequence): | |
future = executor.submit(post_process, idx, frame_img, *args) | |
futures.append(future) | |
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Pasting back"): | |
result = future.result() | |
concurrent_post_process( | |
image_sequence, | |
split_preds, | |
split_matrs, | |
split_masks, | |
enable_laplacian_blend, | |
crop_mask, | |
blur_amount, | |
erode_amount | |
) | |
## ------------------------------ IMAGE ------------------------------ | |
if input_type == "Image": | |
target = cv2.imread(image_path) | |
output_file = os.path.join(output_path, output_name + ".png") | |
cv2.imwrite(output_file, target) | |
for info_update in swap_process([output_file]): | |
yield info_update | |
OUTPUT_FILE = output_file | |
WORKSPACE = output_path | |
PREVIEW = cv2.imread(output_file)[:, :, ::-1] | |
yield get_finsh_text(start_time), *ui_after() | |
## ------------------------------ VIDEO ------------------------------ | |
elif input_type == "Video": | |
temp_path = os.path.join(output_path, output_name, "sequence") | |
os.makedirs(temp_path, exist_ok=True) | |
yield "### \n โ Extracting video frames...", *ui_before() | |
image_sequence = [] | |
cap = cv2.VideoCapture(video_path) | |
curr_idx = 0 | |
while True: | |
ret, frame = cap.read() | |
if not ret:break | |
frame_path = os.path.join(temp_path, f"frame_{curr_idx}.jpg") | |
cv2.imwrite(frame_path, frame) | |
image_sequence.append(frame_path) | |
curr_idx += 1 | |
cap.release() | |
cv2.destroyAllWindows() | |
for info_update in swap_process(image_sequence): | |
yield info_update | |
yield "### \n โ Merging sequence...", *ui_before() | |
output_video_path = os.path.join(output_path, output_name + ".mp4") | |
merge_img_sequence_from_ref(video_path, image_sequence, output_video_path) | |
if os.path.exists(temp_path) and not keep_output_sequence: | |
yield "### \n โ Removing temporary files...", *ui_before() | |
shutil.rmtree(temp_path) | |
WORKSPACE = output_path | |
OUTPUT_FILE = output_video_path | |
yield get_finsh_text(start_time), *ui_after_vid() | |
## ------------------------------ DIRECTORY ------------------------------ | |
elif input_type == "Directory": | |
extensions = ["jpg", "jpeg", "png", "bmp", "tiff", "ico", "webp"] | |
temp_path = os.path.join(output_path, output_name) | |
if os.path.exists(temp_path): | |
shutil.rmtree(temp_path) | |
os.mkdir(temp_path) | |
file_paths =[] | |
for file_path in glob.glob(os.path.join(directory_path, "*")): | |
if any(file_path.lower().endswith(ext) for ext in extensions): | |
img = cv2.imread(file_path) | |
new_file_path = os.path.join(temp_path, os.path.basename(file_path)) | |
cv2.imwrite(new_file_path, img) | |
file_paths.append(new_file_path) | |
for info_update in swap_process(file_paths): | |
yield info_update | |
PREVIEW = cv2.imread(file_paths[-1])[:, :, ::-1] | |
WORKSPACE = temp_path | |
OUTPUT_FILE = file_paths[-1] | |
yield get_finsh_text(start_time), *ui_after() | |
## ------------------------------ STREAM ------------------------------ | |
elif input_type == "Stream": | |
pass | |
## ------------------------------ GRADIO FUNC ------------------------------ | |
def update_radio(value): | |
if value == "Image": | |
return ( | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
) | |
elif value == "Video": | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
) | |
elif value == "Directory": | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
) | |
elif value == "Stream": | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
) | |
def swap_option_changed(value): | |
if value.startswith("Age"): | |
return ( | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
) | |
elif value == "Specific Face": | |
return ( | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
) | |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) | |
def video_changed(video_path): | |
sliders_update = gr.Slider.update | |
button_update = gr.Button.update | |
number_update = gr.Number.update | |
if video_path is None: | |
return ( | |
sliders_update(minimum=0, maximum=0, value=0), | |
sliders_update(minimum=1, maximum=1, value=1), | |
number_update(value=1), | |
) | |
try: | |
clip = VideoFileClip(video_path) | |
fps = clip.fps | |
total_frames = clip.reader.nframes | |
clip.close() | |
return ( | |
sliders_update(minimum=0, maximum=total_frames, value=0, interactive=True), | |
sliders_update( | |
minimum=0, maximum=total_frames, value=total_frames, interactive=True | |
), | |
number_update(value=fps), | |
) | |
except: | |
return ( | |
sliders_update(value=0), | |
sliders_update(value=0), | |
number_update(value=1), | |
) | |
def analyse_settings_changed(detect_condition, detection_size, detection_threshold): | |
yield "### \n โ Applying new values..." | |
global FACE_ANALYSER | |
global DETECT_CONDITION | |
DETECT_CONDITION = detect_condition | |
FACE_ANALYSER = insightface.app.FaceAnalysis(name="buffalo_l", providers=PROVIDER) | |
FACE_ANALYSER.prepare( | |
ctx_id=0, | |
det_size=(int(detection_size), int(detection_size)), | |
det_thresh=float(detection_threshold), | |
) | |
yield f"### \n โ๏ธ Applied detect condition:{detect_condition}, detection size: {detection_size}, detection threshold: {detection_threshold}" | |
def stop_running(): | |
global STREAMER | |
if hasattr(STREAMER, "stop"): | |
STREAMER.stop() | |
STREAMER = None | |
return "Cancelled" | |
def slider_changed(show_frame, video_path, frame_index): | |
if not show_frame: | |
return None, None | |
if video_path is None: | |
return None, None | |
clip = VideoFileClip(video_path) | |
frame = clip.get_frame(frame_index / clip.fps) | |
frame_array = np.array(frame) | |
clip.close() | |
return gr.Image.update(value=frame_array, visible=True), gr.Video.update( | |
visible=False | |
) | |
def trim_and_reload(video_path, output_path, output_name, start_frame, stop_frame): | |
yield video_path, f"### \n โ Trimming video frame {start_frame} to {stop_frame}..." | |
try: | |
output_path = os.path.join(output_path, output_name) | |
trimmed_video = trim_video(video_path, output_path, start_frame, stop_frame) | |
yield trimmed_video, "### \n โ๏ธ Video trimmed and reloaded." | |
except Exception as e: | |
print(e) | |
yield video_path, "### \n โ Video trimming failed. See console for more info." | |
## ------------------------------ GRADIO GUI ------------------------------ | |
css = """ | |
footer{display:none !important} | |
""" | |
with gr.Blocks(css=css) as interface: | |
gr.Markdown("# ๐ฟ Swap Mukham") | |
gr.Markdown("### Face swap app based on insightface inswapper.") | |
with gr.Row(): | |
with gr.Row(): | |
with gr.Column(scale=0.4): | |
with gr.Tab("๐ Swap Condition"): | |
swap_option = gr.Dropdown( | |
swap_options_list, | |
info="Choose which face or faces in the target image to swap.", | |
multiselect=False, | |
show_label=False, | |
value=swap_options_list[0], | |
interactive=True, | |
) | |
age = gr.Number( | |
value=25, label="Value", interactive=True, visible=False | |
) | |
with gr.Tab("๐๏ธ Detection Settings"): | |
detect_condition_dropdown = gr.Dropdown( | |
detect_conditions, | |
label="Condition", | |
value=DETECT_CONDITION, | |
interactive=True, | |
info="This condition is only used when multiple faces are detected on source or specific image.", | |
) | |
detection_size = gr.Number( | |
label="Detection Size", value=DETECT_SIZE, interactive=True | |
) | |
detection_threshold = gr.Number( | |
label="Detection Threshold", | |
value=DETECT_THRESH, | |
interactive=True, | |
) | |
apply_detection_settings = gr.Button("Apply settings") | |
with gr.Tab("๐ค Output Settings"): | |
output_directory = gr.Text( | |
label="Output Directory", | |
value=DEF_OUTPUT_PATH, | |
interactive=True, | |
) | |
output_name = gr.Text( | |
label="Output Name", value="Result", interactive=True | |
) | |
keep_output_sequence = gr.Checkbox( | |
label="Keep output sequence", value=False, interactive=True | |
) | |
with gr.Tab("๐ช Other Settings"): | |
face_scale = gr.Slider( | |
label="Face Scale", | |
minimum=0, | |
maximum=2, | |
value=1, | |
interactive=True, | |
) | |
face_enhancer_name = gr.Dropdown( | |
FACE_ENHANCER_LIST, label="Face Enhancer", value="NONE", multiselect=False, interactive=True | |
) | |
with gr.Accordion("Advanced Mask", open=False): | |
enable_face_parser_mask = gr.Checkbox( | |
label="Enable Face Parsing", | |
value=False, | |
interactive=True, | |
) | |
mask_include = gr.Dropdown( | |
mask_regions.keys(), | |
value=MASK_INCLUDE, | |
multiselect=True, | |
label="Include", | |
interactive=True, | |
) | |
mask_soft_kernel = gr.Number( | |
label="Soft Erode Kernel", | |
value=MASK_SOFT_KERNEL, | |
minimum=3, | |
interactive=True, | |
visible = False | |
) | |
mask_soft_iterations = gr.Number( | |
label="Soft Erode Iterations", | |
value=MASK_SOFT_ITERATIONS, | |
minimum=0, | |
interactive=True, | |
) | |
with gr.Accordion("Crop Mask", open=False): | |
crop_top = gr.Slider(label="Top", minimum=0, maximum=511, value=0, step=1, interactive=True) | |
crop_bott = gr.Slider(label="Bottom", minimum=0, maximum=511, value=511, step=1, interactive=True) | |
crop_left = gr.Slider(label="Left", minimum=0, maximum=511, value=0, step=1, interactive=True) | |
crop_right = gr.Slider(label="Right", minimum=0, maximum=511, value=511, step=1, interactive=True) | |
erode_amount = gr.Slider( | |
label="Mask Erode", | |
minimum=0, | |
maximum=1, | |
value=MASK_ERODE_AMOUNT, | |
step=0.05, | |
interactive=True, | |
) | |
blur_amount = gr.Slider( | |
label="Mask Blur", | |
minimum=0, | |
maximum=1, | |
value=MASK_BLUR_AMOUNT, | |
step=0.05, | |
interactive=True, | |
) | |
enable_laplacian_blend = gr.Checkbox( | |
label="Laplacian Blending", | |
value=True, | |
interactive=True, | |
) | |
source_image_input = gr.Image( | |
label="Source face", type="filepath", interactive=True | |
) | |
with gr.Group(visible=False) as specific_face: | |
for i in range(NUM_OF_SRC_SPECIFIC): | |
idx = i + 1 | |
code = "\n" | |
code += f"with gr.Tab(label='({idx})'):" | |
code += "\n\twith gr.Row():" | |
code += f"\n\t\tsrc{idx} = gr.Image(interactive=True, type='numpy', label='Source Face {idx}')" | |
code += f"\n\t\ttrg{idx} = gr.Image(interactive=True, type='numpy', label='Specific Face {idx}')" | |
exec(code) | |
distance_slider = gr.Slider( | |
minimum=0, | |
maximum=2, | |
value=0.6, | |
interactive=True, | |
label="Distance", | |
info="Lower distance is more similar and higher distance is less similar to the target face.", | |
) | |
with gr.Group(): | |
input_type = gr.Radio( | |
["Image", "Video"], | |
label="Target Type", | |
value="Image", | |
) | |
with gr.Group(visible=True) as input_image_group: | |
image_input = gr.Image( | |
label="Target Image", interactive=True, type="filepath" | |
) | |
with gr.Group(visible=False) as input_video_group: | |
vid_widget = gr.Video if USE_COLAB else gr.Text | |
video_input = gr.Video( | |
label="Target Video", interactive=True | |
) | |
with gr.Accordion("โ๏ธ Trim video", open=False): | |
with gr.Column(): | |
with gr.Row(): | |
set_slider_range_btn = gr.Button( | |
"Set frame range", interactive=True | |
) | |
show_trim_preview_btn = gr.Checkbox( | |
label="Show frame when slider change", | |
value=True, | |
interactive=True, | |
) | |
video_fps = gr.Number( | |
value=30, | |
interactive=False, | |
label="Fps", | |
visible=False, | |
) | |
start_frame = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=0, | |
step=1, | |
interactive=True, | |
label="Start Frame", | |
info="", | |
) | |
end_frame = gr.Slider( | |
minimum=0, | |
maximum=1, | |
value=1, | |
step=1, | |
interactive=True, | |
label="End Frame", | |
info="", | |
) | |
trim_and_reload_btn = gr.Button( | |
"Trim and Reload", interactive=True | |
) | |
with gr.Group(visible=False) as input_directory_group: | |
direc_input = gr.Text(label="Path", interactive=True) | |
with gr.Column(scale=0.6): | |
info = gr.Markdown(value="...") | |
with gr.Row(): | |
swap_button = gr.Button("โจ Swap", variant="primary") | |
cancel_button = gr.Button("โ Cancel") | |
preview_image = gr.Image(label="Output", interactive=False) | |
preview_video = gr.Video( | |
label="Output", interactive=False, visible=False | |
) | |
with gr.Row(): | |
output_directory_button = gr.Button( | |
"๐", interactive=False, visible=False | |
) | |
output_video_button = gr.Button( | |
"๐ฌ", interactive=False, visible=False | |
) | |
with gr.Group(): | |
with gr.Row(): | |
gr.Markdown( | |
"### [๐ค Sponsor](https://github.com/sponsors/harisreedhar)" | |
) | |
gr.Markdown( | |
"### [๐จโ๐ป Source code](https://github.com/harisreedhar/Swap-Mukham)" | |
) | |
gr.Markdown( | |
"### [โ ๏ธ Disclaimer](https://github.com/harisreedhar/Swap-Mukham#disclaimer)" | |
) | |
gr.Markdown( | |
"### [๐ Run in Colab](https://colab.research.google.com/github/harisreedhar/Swap-Mukham/blob/main/swap_mukham_colab.ipynb)" | |
) | |
gr.Markdown( | |
"### [๐ค Acknowledgements](https://github.com/harisreedhar/Swap-Mukham#acknowledgements)" | |
) | |
## ------------------------------ GRADIO EVENTS ------------------------------ | |
set_slider_range_event = set_slider_range_btn.click( | |
video_changed, | |
inputs=[video_input], | |
outputs=[start_frame, end_frame, video_fps], | |
) | |
trim_and_reload_event = trim_and_reload_btn.click( | |
fn=trim_and_reload, | |
inputs=[video_input, output_directory, output_name, start_frame, end_frame], | |
outputs=[video_input, info], | |
) | |
start_frame_event = start_frame.release( | |
fn=slider_changed, | |
inputs=[show_trim_preview_btn, video_input, start_frame], | |
outputs=[preview_image, preview_video], | |
show_progress=True, | |
) | |
end_frame_event = end_frame.release( | |
fn=slider_changed, | |
inputs=[show_trim_preview_btn, video_input, end_frame], | |
outputs=[preview_image, preview_video], | |
show_progress=True, | |
) | |
input_type.change( | |
update_radio, | |
inputs=[input_type], | |
outputs=[input_image_group, input_video_group, input_directory_group], | |
) | |
swap_option.change( | |
swap_option_changed, | |
inputs=[swap_option], | |
outputs=[age, specific_face, source_image_input], | |
) | |
apply_detection_settings.click( | |
analyse_settings_changed, | |
inputs=[detect_condition_dropdown, detection_size, detection_threshold], | |
outputs=[info], | |
) | |
src_specific_inputs = [] | |
gen_variable_txt = ",".join( | |
[f"src{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)] | |
+ [f"trg{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)] | |
) | |
exec(f"src_specific_inputs = ({gen_variable_txt})") | |
swap_inputs = [ | |
input_type, | |
image_input, | |
video_input, | |
direc_input, | |
source_image_input, | |
output_directory, | |
output_name, | |
keep_output_sequence, | |
swap_option, | |
age, | |
distance_slider, | |
face_enhancer_name, | |
enable_face_parser_mask, | |
mask_include, | |
mask_soft_kernel, | |
mask_soft_iterations, | |
blur_amount, | |
erode_amount, | |
face_scale, | |
enable_laplacian_blend, | |
crop_top, | |
crop_bott, | |
crop_left, | |
crop_right, | |
*src_specific_inputs, | |
] | |
swap_outputs = [ | |
info, | |
preview_image, | |
output_directory_button, | |
output_video_button, | |
preview_video, | |
] | |
swap_event = swap_button.click( | |
fn=process, inputs=swap_inputs, outputs=swap_outputs, show_progress=True | |
) | |
cancel_button.click( | |
fn=stop_running, | |
inputs=None, | |
outputs=[info], | |
cancels=[ | |
swap_event, | |
trim_and_reload_event, | |
set_slider_range_event, | |
start_frame_event, | |
end_frame_event, | |
], | |
show_progress=True, | |
) | |
output_directory_button.click( | |
lambda: open_directory(path=WORKSPACE), inputs=None, outputs=None | |
) | |
output_video_button.click( | |
lambda: open_directory(path=OUTPUT_FILE), inputs=None, outputs=None | |
) | |
if __name__ == "__main__": | |
if USE_COLAB: | |
print("Running in colab mode") | |
interface.launch() | |
#### APP.PY CODE END ### | |