Charbel Malo commited on
Commit
71982ea
·
verified ·
1 Parent(s): 8aa976e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -17
app.py CHANGED
@@ -270,7 +270,7 @@ def remove_custom_lora(selected_indices, current_loras, gallery):
270
  lora_image_2
271
  )
272
 
273
- @spaces.GPU(duration=75)
274
  def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
275
  print("Generating image...")
276
  pipe.to("cuda")
@@ -290,7 +290,7 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
290
  ):
291
  yield img
292
 
293
- @spaces.GPU(duration=75)
294
  def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
295
  pipe_i2i.to("cuda")
296
  generator = torch.Generator(device="cuda").manual_seed(seed)
@@ -309,6 +309,7 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
309
  ).images[0]
310
  return final_image
311
 
 
312
  def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
313
  if not selected_indices:
314
  raise gr.Error("You must select at least one LoRA before proceeding.")
@@ -340,20 +341,20 @@ def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_ind
340
  for idx, lora in enumerate(selected_loras):
341
  lora_name = f"lora_{idx}"
342
  lora_names.append(lora_name)
 
343
  lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2)
344
  lora_path = lora['repo']
345
  weight_name = lora.get("weights")
346
  print(f"Lora Path: {lora_path}")
347
- if image_input is not None:
348
- if weight_name:
349
- pipe_i2i.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True, adapter_name=lora_name)
350
- else:
351
- pipe_i2i.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
352
- else:
353
- if weight_name:
354
- pipe.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True, adapter_name=lora_name)
355
- else:
356
- pipe.load_lora_weights(lora_path, low_cpu_mem_usage=True, adapter_name=lora_name)
357
  print("Loaded LoRAs:", lora_names)
358
  print("Adapter weights:", lora_weights)
359
  if image_input is not None:
@@ -463,7 +464,7 @@ css = '''
463
  #component-11{align-self: stretch;}
464
  '''
465
 
466
- with gr.Blocks(css=css, delete_cache=(60, 3600)) as app:
467
  title = gr.HTML(
468
  """<h1><img src="https://i.imgur.com/wMh2Oek.png" alt="LoRA"> LoRA Lab [beta]</h1><br><span style="
469
  margin-top: -25px !important;
@@ -515,18 +516,20 @@ with gr.Blocks(css=css, delete_cache=(60, 3600)) as app:
515
  label="Or pick from the LoRA Explorer gallery",
516
  allow_preview=False,
517
  columns=5,
518
- elem_id="gallery"
 
 
519
  )
520
  with gr.Column():
521
  progress_bar = gr.Markdown(elem_id="progress", visible=False)
522
- result = gr.Image(label="Generated Image", interactive=False)
523
  with gr.Accordion("History", open=False):
524
  history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
525
 
526
  with gr.Row():
527
  with gr.Accordion("Advanced Settings", open=False):
528
  with gr.Row():
529
- input_image = gr.Image(label="Input image", type="filepath")
530
  image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
531
  with gr.Column():
532
  with gr.Row():
@@ -575,7 +578,7 @@ with gr.Blocks(css=css, delete_cache=(60, 3600)) as app:
575
  fn=run_lora,
576
  inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
577
  outputs=[result, seed, progress_bar]
578
- ).then( # Update the history gallery
579
  fn=lambda x, history: update_history(x, history),
580
  inputs=[result, history_gallery],
581
  outputs=history_gallery,
 
270
  lora_image_2
271
  )
272
 
273
+ @spaces.GPU()
274
  def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
275
  print("Generating image...")
276
  pipe.to("cuda")
 
290
  ):
291
  yield img
292
 
293
+ @spaces.GPU()
294
  def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
295
  pipe_i2i.to("cuda")
296
  generator = torch.Generator(device="cuda").manual_seed(seed)
 
309
  ).images[0]
310
  return final_image
311
 
312
+ @spaces.GPU(duration=75)
313
  def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
314
  if not selected_indices:
315
  raise gr.Error("You must select at least one LoRA before proceeding.")
 
341
  for idx, lora in enumerate(selected_loras):
342
  lora_name = f"lora_{idx}"
343
  lora_names.append(lora_name)
344
+ print(f"Lora Name: {lora_name}")
345
  lora_weights.append(lora_scale_1 if idx == 0 else lora_scale_2)
346
  lora_path = lora['repo']
347
  weight_name = lora.get("weights")
348
  print(f"Lora Path: {lora_path}")
349
+ pipe_to_use = pipe_i2i if image_input is not None else pipe
350
+ pipe_to_use.load_lora_weights(
351
+ lora_path,
352
+ weight_name=weight_name if weight_name else None,
353
+ low_cpu_mem_usage=True,
354
+ adapter_name=lora_name
355
+ )
356
+ # if image_input is not None: pipe_i2i = pipe_to_use
357
+ # else: pipe = pipe_to_use
 
358
  print("Loaded LoRAs:", lora_names)
359
  print("Adapter weights:", lora_weights)
360
  if image_input is not None:
 
464
  #component-11{align-self: stretch;}
465
  '''
466
 
467
+ with gr.Blocks(css=css, delete_cache=(60, 60)) as app:
468
  title = gr.HTML(
469
  """<h1><img src="https://i.imgur.com/wMh2Oek.png" alt="LoRA"> LoRA Lab [beta]</h1><br><span style="
470
  margin-top: -25px !important;
 
516
  label="Or pick from the LoRA Explorer gallery",
517
  allow_preview=False,
518
  columns=5,
519
+ elem_id="gallery",
520
+ show_share_button=False,
521
+ interactive=False
522
  )
523
  with gr.Column():
524
  progress_bar = gr.Markdown(elem_id="progress", visible=False)
525
+ result = gr.Image(label="Generated Image", interactive=False, show_share_button=False)
526
  with gr.Accordion("History", open=False):
527
  history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
528
 
529
  with gr.Row():
530
  with gr.Accordion("Advanced Settings", open=False):
531
  with gr.Row():
532
+ input_image = gr.Image(label="Input image", type="filepath", show_share_button=False)
533
  image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
534
  with gr.Column():
535
  with gr.Row():
 
578
  fn=run_lora,
579
  inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, loras_state],
580
  outputs=[result, seed, progress_bar]
581
+ ).then(
582
  fn=lambda x, history: update_history(x, history),
583
  inputs=[result, history_gallery],
584
  outputs=history_gallery,