Spaces:
Running
Running
Charbel Malo
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import json
|
|
4 |
import logging
|
5 |
import torch
|
6 |
from PIL import Image
|
|
|
7 |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
|
8 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
9 |
from diffusers.utils import load_image
|
@@ -13,7 +14,6 @@ import random
|
|
13 |
import time
|
14 |
import requests
|
15 |
import pandas as pd
|
16 |
-
import spaces
|
17 |
|
18 |
# Load prompts for randomization
|
19 |
df = pd.read_csv('prompts.csv', header=None)
|
@@ -81,472 +81,10 @@ def download_file(url, directory=None):
|
|
81 |
file.write(response.content)
|
82 |
|
83 |
return filepath
|
84 |
-
|
85 |
-
def update_selection(evt: gr.SelectData, selected_indices, loras_state, width, height):
|
86 |
-
selected_index = evt.index
|
87 |
-
selected_indices = selected_indices or []
|
88 |
-
if selected_index in selected_indices:
|
89 |
-
selected_indices.remove(selected_index)
|
90 |
-
else:
|
91 |
-
if len(selected_indices) < 6:
|
92 |
-
selected_indices.append(selected_index)
|
93 |
-
else:
|
94 |
-
gr.Warning("You can select up to 6 LoRAs, remove one to select a new one.")
|
95 |
-
return gr.update(), "Select a LoRA 1", "Select a LoRA 2", "Select a LoRA 3", "Select a LoRA 4", "Select a LoRA 5", "Select a LoRA 6", selected_indices, 1.15, 1.15, 1.15, 1.15, 1.15, 1.15, width, height, None, None, None, None, None, None
|
96 |
-
|
97 |
-
# Initialize defaults
|
98 |
-
selected_info_1 = "Select a LoRA 1"
|
99 |
-
selected_info_2 = "Select a LoRA 2"
|
100 |
-
selected_info_3 = "Select a LoRA 3"
|
101 |
-
selected_info_4 = "Select a LoRA 4"
|
102 |
-
selected_info_5 = "Select a LoRA 5"
|
103 |
-
selected_info_6 = "Select a LoRA 6"
|
104 |
-
lora_scale_1 = 1.15
|
105 |
-
lora_scale_2 = 1.15
|
106 |
-
lora_scale_3 = 1.15
|
107 |
-
lora_scale_4 = 1.15
|
108 |
-
lora_scale_5 = 1.15
|
109 |
-
lora_scale_6 = 1.15
|
110 |
-
lora_image_1 = None
|
111 |
-
lora_image_2 = None
|
112 |
-
lora_image_3 = None
|
113 |
-
lora_image_4 = None
|
114 |
-
lora_image_5 = None
|
115 |
-
lora_image_6 = None
|
116 |
-
|
117 |
-
if len(selected_indices) >= 1:
|
118 |
-
lora1 = loras_state[selected_indices[0]]
|
119 |
-
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
|
120 |
-
lora_image_1 = lora1['image']
|
121 |
-
if len(selected_indices) >= 2:
|
122 |
-
lora2 = loras_state[selected_indices[1]]
|
123 |
-
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
|
124 |
-
lora_image_2 = lora2['image']
|
125 |
-
if len(selected_indices) >= 3:
|
126 |
-
lora3 = loras_state[selected_indices[2]]
|
127 |
-
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}](https://huggingface.co/{lora3['repo']}) ✨"
|
128 |
-
lora_image_3 = lora3['image']
|
129 |
-
if len(selected_indices) >= 4:
|
130 |
-
lora4 = loras_state[selected_indices[3]]
|
131 |
-
selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}](https://huggingface.co/{lora4['repo']}) ✨"
|
132 |
-
lora_image_4 = lora4['image']
|
133 |
-
if len(selected_indices) >= 5:
|
134 |
-
lora5 = loras_state[selected_indices[4]]
|
135 |
-
selected_info_5 = f"### LoRA 5 Selected: [{lora5['title']}](https://huggingface.co/{lora5['repo']}) ✨"
|
136 |
-
lora_image_5 = lora5['image']
|
137 |
-
if len(selected_indices) >= 6:
|
138 |
-
lora6 = loras_state[selected_indices[5]]
|
139 |
-
selected_info_6 = f"### LoRA 6 Selected: [{lora6['title']}](https://huggingface.co/{lora6['repo']}) ✨"
|
140 |
-
lora_image_6 = lora6['image']
|
141 |
-
|
142 |
-
if selected_indices:
|
143 |
-
last_selected_lora = loras_state[selected_indices[-1]]
|
144 |
-
new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
|
145 |
-
else:
|
146 |
-
new_placeholder = "Type a prompt after selecting a LoRA"
|
147 |
-
|
148 |
-
return (
|
149 |
-
gr.update(placeholder=new_placeholder),
|
150 |
-
selected_info_1,
|
151 |
-
selected_info_2,
|
152 |
-
selected_info_3,
|
153 |
-
selected_info_4,
|
154 |
-
selected_info_5,
|
155 |
-
selected_info_6,
|
156 |
-
selected_indices,
|
157 |
-
lora_scale_1,
|
158 |
-
lora_scale_2,
|
159 |
-
lora_scale_3,
|
160 |
-
lora_scale_4,
|
161 |
-
lora_scale_5,
|
162 |
-
lora_scale_6,
|
163 |
-
width,
|
164 |
-
height,
|
165 |
-
lora_image_1,
|
166 |
-
lora_image_2,
|
167 |
-
lora_image_3,
|
168 |
-
lora_image_4,
|
169 |
-
lora_image_5,
|
170 |
-
lora_image_6
|
171 |
-
)
|
172 |
-
|
173 |
-
def remove_lora_1(selected_indices, loras_state):
|
174 |
-
if len(selected_indices) >= 1:
|
175 |
-
selected_indices.pop(0)
|
176 |
-
return update_selection_after_removal(selected_indices, loras_state)
|
177 |
-
|
178 |
-
def remove_lora_2(selected_indices, loras_state):
|
179 |
-
if len(selected_indices) >= 2:
|
180 |
-
selected_indices.pop(1)
|
181 |
-
return update_selection_after_removal(selected_indices, loras_state)
|
182 |
-
|
183 |
-
def remove_lora_3(selected_indices, loras_state):
|
184 |
-
if len(selected_indices) >= 3:
|
185 |
-
selected_indices.pop(2)
|
186 |
-
return update_selection_after_removal(selected_indices, loras_state)
|
187 |
-
|
188 |
-
def remove_lora_4(selected_indices, loras_state):
|
189 |
-
if len(selected_indices) >= 4:
|
190 |
-
selected_indices.pop(3)
|
191 |
-
return update_selection_after_removal(selected_indices, loras_state)
|
192 |
-
|
193 |
-
def remove_lora_5(selected_indices, loras_state):
|
194 |
-
if len(selected_indices) >= 5:
|
195 |
-
selected_indices.pop(4)
|
196 |
-
return update_selection_after_removal(selected_indices, loras_state)
|
197 |
-
|
198 |
-
def remove_lora_6(selected_indices, loras_state):
|
199 |
-
if len(selected_indices) >= 6:
|
200 |
-
selected_indices.pop(5)
|
201 |
-
return update_selection_after_removal(selected_indices, loras_state)
|
202 |
-
|
203 |
-
def update_selection_after_removal(selected_indices, loras_state):
|
204 |
-
# Reinitialize defaults
|
205 |
-
selected_info_1 = "Select a LoRA 1"
|
206 |
-
selected_info_2 = "Select a LoRA 2"
|
207 |
-
selected_info_3 = "Select a LoRA 3"
|
208 |
-
selected_info_4 = "Select a LoRA 4"
|
209 |
-
selected_info_5 = "Select a LoRA 5"
|
210 |
-
selected_info_6 = "Select a LoRA 6"
|
211 |
-
lora_scale_1 = 1.15
|
212 |
-
lora_scale_2 = 1.15
|
213 |
-
lora_scale_3 = 1.15
|
214 |
-
lora_scale_4 = 1.15
|
215 |
-
lora_scale_5 = 1.15
|
216 |
-
lora_scale_6 = 1.15
|
217 |
-
lora_image_1 = None
|
218 |
-
lora_image_2 = None
|
219 |
-
lora_image_3 = None
|
220 |
-
lora_image_4 = None
|
221 |
-
lora_image_5 = None
|
222 |
-
lora_image_6 = None
|
223 |
-
|
224 |
-
# Update selected LoRAs
|
225 |
-
if len(selected_indices) >= 1:
|
226 |
-
lora1 = loras_state[selected_indices[0]]
|
227 |
-
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}]({lora1['repo']}) ✨"
|
228 |
-
lora_image_1 = lora1['image']
|
229 |
-
if len(selected_indices) >= 2:
|
230 |
-
lora2 = loras_state[selected_indices[1]]
|
231 |
-
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}]({lora2['repo']}) ✨"
|
232 |
-
lora_image_2 = lora2['image']
|
233 |
-
if len(selected_indices) >= 3:
|
234 |
-
lora3 = loras_state[selected_indices[2]]
|
235 |
-
selected_info_3 = f"### LoRA 3 Selected: [{lora3['title']}]({lora3['repo']}) ✨"
|
236 |
-
lora_image_3 = lora3['image']
|
237 |
-
if len(selected_indices) >= 4:
|
238 |
-
lora4 = loras_state[selected_indices[3]]
|
239 |
-
selected_info_4 = f"### LoRA 4 Selected: [{lora4['title']}]({lora4['repo']}) ✨"
|
240 |
-
lora_image_4 = lora4['image']
|
241 |
-
if len(selected_indices) >= 5:
|
242 |
-
lora5 = loras_state[selected_indices[4]]
|
243 |
-
selected_info_5 = f"### LoRA 5 Selected: [{lora5['title']}]({lora5['repo']}) ✨"
|
244 |
-
lora_image_5 = lora5['image']
|
245 |
-
if len(selected_indices) >= 6:
|
246 |
-
lora6 = loras_state[selected_indices[5]]
|
247 |
-
selected_info_6 = f"### LoRA 6 Selected: [{lora6['title']}]({lora6['repo']}) ✨"
|
248 |
-
lora_image_6 = lora6['image']
|
249 |
-
|
250 |
-
return (
|
251 |
-
selected_info_1,
|
252 |
-
selected_info_2,
|
253 |
-
selected_info_3,
|
254 |
-
selected_info_4,
|
255 |
-
selected_info_5,
|
256 |
-
selected_info_6,
|
257 |
-
selected_indices,
|
258 |
-
lora_scale_1,
|
259 |
-
lora_scale_2,
|
260 |
-
lora_scale_3,
|
261 |
-
lora_scale_4,
|
262 |
-
lora_scale_5,
|
263 |
-
lora_scale_6,
|
264 |
-
lora_image_1,
|
265 |
-
lora_image_2,
|
266 |
-
lora_image_3,
|
267 |
-
lora_image_4,
|
268 |
-
lora_image_5,
|
269 |
-
lora_image_6
|
270 |
-
)
|
271 |
-
|
272 |
-
def randomize_loras(selected_indices, loras_state):
|
273 |
-
num_loras = min(6, len(loras_state))
|
274 |
-
selected_indices = random.sample(range(len(loras_state)), num_loras)
|
275 |
-
selected_info_1 = "Select a LoRA 1"
|
276 |
-
selected_info_2 = "Select a LoRA 2"
|
277 |
-
selected_info_3 = "Select a LoRA 3"
|
278 |
-
selected_info_4 = "Select a LoRA 4"
|
279 |
-
selected_info_5 = "Select a LoRA 5"
|
280 |
-
selected_info_6 = "Select a LoRA 6"
|
281 |
-
lora_scale_1 = 1.15
|
282 |
-
lora_scale_2 = 1.15
|
283 |
-
lora_scale_3 = 1.15
|
284 |
-
lora_scale_4 = 1.15
|
285 |
-
lora_scale_5 = 1.15
|
286 |
-
lora_scale_6 = 1.15
|
287 |
-
lora_image_1 = None
|
288 |
-
lora_image_2 = None
|
289 |
-
lora_image_3 = None
|
290 |
-
lora_image_4 = None
|
291 |
-
lora_image_5 = None
|
292 |
-
lora_image_6 = None
|
293 |
-
|
294 |
-
for idx, sel_idx in enumerate(selected_indices):
|
295 |
-
lora = loras_state[sel_idx]
|
296 |
-
if idx == 0:
|
297 |
-
selected_info_1 = f"### LoRA 1 Selected: [{lora['title']}](https://huggingface.co/{lora['repo']}) ✨"
|
298 |
-
lora_image_1 = lora['image']
|
299 |
-
elif idx == 1:
|
300 |
-
selected_info_2 = f"### LoRA 2 Selected: [{lora['title']}](https://huggingface.co/{lora['repo']}) ✨"
|
301 |
-
lora_image_2 = lora['image']
|
302 |
-
elif idx == 2:
|
303 |
-
selected_info_3 = f"### LoRA 3 Selected: [{lora['title']}](https://huggingface.co/{lora['repo']}) ✨"
|
304 |
-
lora_image_3 = lora['image']
|
305 |
-
elif idx == 3:
|
306 |
-
selected_info_4 = f"### LoRA 4 Selected: [{lora['title']}](https://huggingface.co/{lora['repo']}) ✨"
|
307 |
-
lora_image_4 = lora['image']
|
308 |
-
elif idx == 4:
|
309 |
-
selected_info_5 = f"### LoRA 5 Selected: [{lora['title']}](https://huggingface.co/{lora['repo']}) ✨"
|
310 |
-
lora_image_5 = lora['image']
|
311 |
-
elif idx == 5:
|
312 |
-
selected_info_6 = f"### LoRA 6 Selected: [{lora['title']}](https://huggingface.co/{lora['repo']}) ✨"
|
313 |
-
lora_image_6 = lora['image']
|
314 |
-
|
315 |
-
random_prompt = random.choice(prompt_values)
|
316 |
-
return (
|
317 |
-
selected_info_1,
|
318 |
-
selected_info_2,
|
319 |
-
selected_info_3,
|
320 |
-
selected_info_4,
|
321 |
-
selected_info_5,
|
322 |
-
selected_info_6,
|
323 |
-
selected_indices,
|
324 |
-
lora_scale_1,
|
325 |
-
lora_scale_2,
|
326 |
-
lora_scale_3,
|
327 |
-
lora_scale_4,
|
328 |
-
lora_scale_5,
|
329 |
-
lora_scale_6,
|
330 |
-
lora_image_1,
|
331 |
-
lora_image_2,
|
332 |
-
lora_image_3,
|
333 |
-
lora_image_4,
|
334 |
-
lora_image_5,
|
335 |
-
lora_image_6,
|
336 |
-
random_prompt
|
337 |
-
)
|
338 |
-
|
339 |
-
def add_custom_lora(custom_lora, selected_indices, current_loras, gallery):
|
340 |
-
if custom_lora:
|
341 |
-
try:
|
342 |
-
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
|
343 |
-
print(f"Loaded custom LoRA: {repo}")
|
344 |
-
existing_item_index = next((index for (index, item) in enumerate(current_loras) if item['repo'] == repo), None)
|
345 |
-
if existing_item_index is None:
|
346 |
-
if repo.endswith(".safetensors") and repo.startswith("http"):
|
347 |
-
repo = download_file(repo)
|
348 |
-
new_item = {
|
349 |
-
"image": image if image else "/home/user/app/custom.png",
|
350 |
-
"title": title,
|
351 |
-
"repo": repo,
|
352 |
-
"weights": path,
|
353 |
-
"trigger_word": trigger_word
|
354 |
-
}
|
355 |
-
print(f"New LoRA: {new_item}")
|
356 |
-
existing_item_index = len(current_loras)
|
357 |
-
current_loras.append(new_item)
|
358 |
-
|
359 |
-
# Update gallery
|
360 |
-
gallery_items = [(item["image"], item["title"]) for item in current_loras]
|
361 |
-
# Update selected_indices if there's room
|
362 |
-
if len(selected_indices) < 6:
|
363 |
-
selected_indices.append(existing_item_index)
|
364 |
-
else:
|
365 |
-
gr.Warning("You can select up to 6 LoRAs, remove one to select a new one.")
|
366 |
-
|
367 |
-
# Update selected_info and images
|
368 |
-
return update_selection_after_removal(selected_indices, current_loras)[:20] + (current_loras, gr.update(value=gallery_items))
|
369 |
-
|
370 |
-
except Exception as e:
|
371 |
-
print(e)
|
372 |
-
gr.Warning(str(e))
|
373 |
-
return current_loras, gr.update(), "Select a LoRA 1", "Select a LoRA 2", "Select a LoRA 3", "Select a LoRA 4", "Select a LoRA 5", "Select a LoRA 6", selected_indices, 1.15, 1.15, 1.15, 1.15, 1.15, 1.15, None, None, None, None, None, None
|
374 |
-
else:
|
375 |
-
return current_loras, gr.update(), "Select a LoRA 1", "Select a LoRA 2", "Select a LoRA 3", "Select a LoRA 4", "Select a LoRA 5", "Select a LoRA 6", selected_indices, 1.15, 1.15, 1.15, 1.15, 1.15, 1.15, None, None, None, None, None, None
|
376 |
-
|
377 |
-
@spaces.GPU(duration=75)
|
378 |
-
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
379 |
-
print("Generating image...")
|
380 |
-
pipe.to("cuda")
|
381 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
382 |
-
with calculateDuration("Generating image"):
|
383 |
-
# Generate image
|
384 |
-
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
385 |
-
prompt=prompt_mash,
|
386 |
-
num_inference_steps=steps,
|
387 |
-
guidance_scale=cfg_scale,
|
388 |
-
width=width,
|
389 |
-
height=height,
|
390 |
-
generator=generator,
|
391 |
-
joint_attention_kwargs={"scale": 1.0},
|
392 |
-
output_type="pil",
|
393 |
-
good_vae=good_vae,
|
394 |
-
):
|
395 |
-
yield img
|
396 |
-
|
397 |
-
@spaces.GPU()
|
398 |
-
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
|
399 |
-
pipe_i2i.to("cuda")
|
400 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
401 |
-
image_input = load_image(image_input_path)
|
402 |
-
final_image = pipe_i2i(
|
403 |
-
prompt=prompt_mash,
|
404 |
-
image=image_input,
|
405 |
-
strength=image_strength,
|
406 |
-
num_inference_steps=steps,
|
407 |
-
guidance_scale=cfg_scale,
|
408 |
-
width=width,
|
409 |
-
height=height,
|
410 |
-
generator=generator,
|
411 |
-
joint_attention_kwargs={"scale": 1.0},
|
412 |
-
output_type="pil",
|
413 |
-
).images[0]
|
414 |
-
return final_image
|
415 |
-
|
416 |
-
|
417 |
-
@spaces.GPU()
|
418 |
-
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_scale_5, lora_scale_6, randomize_seed, seed, width, height, loras_state, progress=gr.Progress(track_tqdm=True)):
|
419 |
-
if not selected_indices:
|
420 |
-
raise gr.Error("You must select at least one LoRA before proceeding.")
|
421 |
-
|
422 |
-
selected_loras = [loras_state[idx] for idx in selected_indices]
|
423 |
-
|
424 |
-
# Build the prompt with trigger words
|
425 |
-
prepends = []
|
426 |
-
appends = []
|
427 |
-
for lora in selected_loras:
|
428 |
-
trigger_word = lora.get('trigger_word', '')
|
429 |
-
if trigger_word:
|
430 |
-
if lora.get("trigger_position") == "prepend":
|
431 |
-
prepends.append(trigger_word)
|
432 |
-
else:
|
433 |
-
appends.append(trigger_word)
|
434 |
-
prompt_mash = " ".join(prepends + [prompt] + appends)
|
435 |
-
print("Prompt Mash: ", prompt_mash)
|
436 |
-
# Unload previous LoRA weights
|
437 |
-
with calculateDuration("Unloading LoRA"):
|
438 |
-
pipe.unload_lora_weights()
|
439 |
-
pipe_i2i.unload_lora_weights()
|
440 |
-
|
441 |
-
print(pipe.get_active_adapters())
|
442 |
-
# Load LoRA weights with respective scales
|
443 |
-
lora_names = []
|
444 |
-
lora_weights = []
|
445 |
-
lora_scales = [
|
446 |
-
lora_scale_1,
|
447 |
-
lora_scale_2,
|
448 |
-
lora_scale_3,
|
449 |
-
lora_scale_4,
|
450 |
-
lora_scale_5,
|
451 |
-
lora_scale_6
|
452 |
-
]
|
453 |
-
with calculateDuration("Loading LoRA weights"):
|
454 |
-
for idx, lora in enumerate(selected_loras):
|
455 |
-
if idx >= 6:
|
456 |
-
break
|
457 |
-
lora_name = f"lora_{idx}"
|
458 |
-
lora_names.append(lora_name)
|
459 |
-
print(f"Lora Name: {lora_name}")
|
460 |
-
lora_weights.append(lora_scales[idx])
|
461 |
-
lora_path = lora['repo']
|
462 |
-
weight_name = lora.get("weights")
|
463 |
-
print(f"Lora Path: {lora_path}")
|
464 |
-
pipe_to_use = pipe_i2i if image_input is not None else pipe
|
465 |
-
pipe_to_use.load_lora_weights(
|
466 |
-
lora_path,
|
467 |
-
weight_name=weight_name if weight_name else None,
|
468 |
-
low_cpu_mem_usage=True,
|
469 |
-
adapter_name=lora_name
|
470 |
-
)
|
471 |
-
print("Loaded LoRAs:", lora_names)
|
472 |
-
print("Adapter weights:", lora_weights)
|
473 |
-
if image_input is not None:
|
474 |
-
pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
|
475 |
-
else:
|
476 |
-
pipe.set_adapters(lora_names, adapter_weights=lora_weights)
|
477 |
-
print(pipe.get_active_adapters())
|
478 |
-
# Set random seed for reproducibility
|
479 |
-
with calculateDuration("Randomizing seed"):
|
480 |
-
if randomize_seed:
|
481 |
-
seed = random.randint(0, MAX_SEED)
|
482 |
-
|
483 |
-
# Generate image
|
484 |
-
if image_input is not None:
|
485 |
-
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
486 |
-
yield final_image, seed, gr.update(visible=False)
|
487 |
-
else:
|
488 |
-
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
489 |
-
# Consume the generator to get the final image
|
490 |
-
final_image = None
|
491 |
-
step_counter = 0
|
492 |
-
for image in image_generator:
|
493 |
-
step_counter += 1
|
494 |
-
final_image = image
|
495 |
-
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
496 |
-
yield image, seed, gr.update(value=progress_bar, visible=True)
|
497 |
-
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
498 |
-
|
499 |
-
|
500 |
-
run_lora.zerogpu = True
|
501 |
-
@spaces.GPU()
|
502 |
-
def get_huggingface_safetensors(link):
|
503 |
-
split_link = link.split("/")
|
504 |
-
if len(split_link) == 2:
|
505 |
-
model_card = ModelCard.load(link)
|
506 |
-
base_model = model_card.data.get("base_model")
|
507 |
-
print(f"Base model: {base_model}")
|
508 |
-
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
|
509 |
-
raise Exception("Not a FLUX LoRA!")
|
510 |
-
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
511 |
-
trigger_word = model_card.data.get("instance_prompt", "")
|
512 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
513 |
-
fs = HfFileSystem()
|
514 |
-
safetensors_name = None
|
515 |
-
try:
|
516 |
-
list_of_files = fs.ls(link, detail=False)
|
517 |
-
for file in list_of_files:
|
518 |
-
if file.endswith(".safetensors"):
|
519 |
-
safetensors_name = file.split("/")[-1]
|
520 |
-
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
|
521 |
-
image_elements = file.split("/")
|
522 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
523 |
-
except Exception as e:
|
524 |
-
print(e)
|
525 |
-
raise gr.Error("Invalid Hugging Face repository with a *.safetensors LoRA")
|
526 |
-
if not safetensors_name:
|
527 |
-
raise gr.Error("No *.safetensors file found in the repository")
|
528 |
-
return split_link[1], link, safetensors_name, trigger_word, image_url
|
529 |
-
else:
|
530 |
-
raise gr.Error("Invalid Hugging Face repository link")
|
531 |
|
532 |
def check_custom_model(link):
|
533 |
-
|
534 |
-
|
535 |
-
title = os.path.basename(link)
|
536 |
-
repo = link
|
537 |
-
path = None # No specific weight name
|
538 |
-
trigger_word = ""
|
539 |
-
image_url = None
|
540 |
-
return title, repo, path, trigger_word, image_url
|
541 |
-
elif link.startswith("https://"):
|
542 |
-
if "huggingface.co" in link:
|
543 |
-
link_split = link.split("huggingface.co/")
|
544 |
-
return get_huggingface_safetensors(link_split[1])
|
545 |
-
else:
|
546 |
-
raise Exception("Unsupported URL")
|
547 |
-
else:
|
548 |
-
# Assume it's a Hugging Face model path
|
549 |
-
return get_huggingface_safetensors(link)
|
550 |
|
551 |
def update_history(new_image, history):
|
552 |
"""Updates the history gallery with the new image."""
|
@@ -578,7 +116,7 @@ css = '''
|
|
578 |
#component-11{align-self: stretch;}
|
579 |
'''
|
580 |
|
581 |
-
with gr.Blocks(css=css, delete_cache=(60, 60)) as app:
|
582 |
title = gr.HTML(
|
583 |
"""<h1><img src="https://i.imgur.com/wMh2Oek.png" alt="LoRA"> LoRA Lab [beta]</h1><br><span style="
|
584 |
margin-top: -25px !important;
|
@@ -589,222 +127,250 @@ with gr.Blocks(css=css, delete_cache=(60, 60)) as app:
|
|
589 |
)
|
590 |
loras_state = gr.State(loras)
|
591 |
selected_indices = gr.State([])
|
|
|
|
|
592 |
with gr.Row():
|
593 |
with gr.Column(scale=3):
|
594 |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
|
595 |
with gr.Column(scale=1):
|
596 |
generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])
|
|
|
597 |
with gr.Row(elem_id="loaded_loras"):
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
with gr.Column(scale=0, min_width=50):
|
626 |
-
lora_image_3 = gr.Image(label="LoRA 3 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
|
627 |
-
with gr.Column(scale=3, min_width=100):
|
628 |
-
selected_info_3 = gr.Markdown("Select a LoRA 3")
|
629 |
-
with gr.Column(scale=5, min_width=50):
|
630 |
-
lora_scale_3 = gr.Slider(label="LoRA 3 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
631 |
-
with gr.Row():
|
632 |
-
remove_button_3 = gr.Button("Remove", size="sm")
|
633 |
-
# LoRA 4
|
634 |
-
with gr.Column(scale=8):
|
635 |
-
with gr.Row():
|
636 |
-
with gr.Column(scale=0, min_width=50):
|
637 |
-
lora_image_4 = gr.Image(label="LoRA 4 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
|
638 |
-
with gr.Column(scale=3, min_width=100):
|
639 |
-
selected_info_4 = gr.Markdown("Select a LoRA 4")
|
640 |
-
with gr.Column(scale=5, min_width=50):
|
641 |
-
lora_scale_4 = gr.Slider(label="LoRA 4 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
642 |
-
with gr.Row():
|
643 |
-
remove_button_4 = gr.Button("Remove", size="sm")
|
644 |
-
# LoRA 5
|
645 |
-
with gr.Column(scale=8):
|
646 |
-
with gr.Row():
|
647 |
-
with gr.Column(scale=0, min_width=50):
|
648 |
-
lora_image_5 = gr.Image(label="LoRA 5 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
|
649 |
-
with gr.Column(scale=3, min_width=100):
|
650 |
-
selected_info_5 = gr.Markdown("Select a LoRA 5")
|
651 |
-
with gr.Column(scale=5, min_width=50):
|
652 |
-
lora_scale_5 = gr.Slider(label="LoRA 5 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
653 |
-
with gr.Row():
|
654 |
-
remove_button_5 = gr.Button("Remove", size="sm")
|
655 |
-
# LoRA 6
|
656 |
-
with gr.Column(scale=8):
|
657 |
-
with gr.Row():
|
658 |
-
with gr.Column(scale=0, min_width=50):
|
659 |
-
lora_image_6 = gr.Image(label="LoRA 6 Image", interactive=False, min_width=50, width=50, show_label=False, show_share_button=False, show_download_button=False, show_fullscreen_button=False, height=50)
|
660 |
-
with gr.Column(scale=3, min_width=100):
|
661 |
-
selected_info_6 = gr.Markdown("Select a LoRA 6")
|
662 |
-
with gr.Column(scale=5, min_width=50):
|
663 |
-
lora_scale_6 = gr.Slider(label="LoRA 6 Scale", minimum=0, maximum=3, step=0.01, value=1.15)
|
664 |
-
with gr.Row():
|
665 |
-
remove_button_6 = gr.Button("Remove", size="sm")
|
666 |
-
with gr.Row():
|
667 |
-
with gr.Column():
|
668 |
-
with gr.Group():
|
669 |
-
with gr.Row(elem_id="custom_lora_structure"):
|
670 |
-
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="multimodalart/vintage-ads-flux", scale=3, min_width=150)
|
671 |
-
add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150)
|
672 |
-
remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False)
|
673 |
-
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
674 |
-
gallery = gr.Gallery(
|
675 |
-
[(item["image"], item["title"]) for item in loras],
|
676 |
-
label="Or pick from the LoRA Explorer gallery",
|
677 |
-
allow_preview=False,
|
678 |
-
columns=5,
|
679 |
-
elem_id="gallery",
|
680 |
-
show_share_button=False,
|
681 |
-
interactive=False
|
682 |
-
)
|
683 |
with gr.Column():
|
684 |
-
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
685 |
-
result = gr.Image(label="Generated Image", interactive=False, show_share_button=False)
|
686 |
-
with gr.Accordion("History", open=False):
|
687 |
-
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
688 |
-
|
689 |
-
with gr.Row():
|
690 |
-
with gr.Accordion("Advanced Settings", open=False):
|
691 |
with gr.Row():
|
692 |
-
|
693 |
-
|
694 |
-
with gr.Column():
|
695 |
-
with gr.Row():
|
696 |
-
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
697 |
-
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
698 |
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
703 |
with gr.Row():
|
704 |
-
|
705 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
706 |
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
remove_button_2.click(
|
729 |
-
remove_lora_2,
|
730 |
-
inputs=[selected_indices, loras_state],
|
731 |
-
outputs=[
|
732 |
-
selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_info_5, selected_info_6,
|
733 |
-
selected_indices,
|
734 |
-
lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_scale_5, lora_scale_6,
|
735 |
-
lora_image_1, lora_image_2, lora_image_3, lora_image_4, lora_image_5, lora_image_6
|
736 |
-
]
|
737 |
-
)
|
738 |
-
remove_button_3.click(
|
739 |
-
remove_lora_3,
|
740 |
-
inputs=[selected_indices, loras_state],
|
741 |
-
outputs=[
|
742 |
-
selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_info_5, selected_info_6,
|
743 |
-
selected_indices,
|
744 |
-
lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_scale_5, lora_scale_6,
|
745 |
-
lora_image_1, lora_image_2, lora_image_3, lora_image_4, lora_image_5, lora_image_6
|
746 |
-
]
|
747 |
-
)
|
748 |
-
remove_button_4.click(
|
749 |
-
remove_lora_4,
|
750 |
-
inputs=[selected_indices, loras_state],
|
751 |
-
outputs=[
|
752 |
-
selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_info_5, selected_info_6,
|
753 |
-
selected_indices,
|
754 |
-
lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_scale_5, lora_scale_6,
|
755 |
-
lora_image_1, lora_image_2, lora_image_3, lora_image_4, lora_image_5, lora_image_6
|
756 |
-
]
|
757 |
-
)
|
758 |
-
remove_button_5.click(
|
759 |
-
remove_lora_5,
|
760 |
-
inputs=[selected_indices, loras_state],
|
761 |
-
outputs=[
|
762 |
-
selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_info_5, selected_info_6,
|
763 |
-
selected_indices,
|
764 |
-
lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_scale_5, lora_scale_6,
|
765 |
-
lora_image_1, lora_image_2, lora_image_3, lora_image_4, lora_image_5, lora_image_6
|
766 |
-
]
|
767 |
-
)
|
768 |
-
remove_button_6.click(
|
769 |
-
remove_lora_6,
|
770 |
-
inputs=[selected_indices, loras_state],
|
771 |
-
outputs=[
|
772 |
-
selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_info_5, selected_info_6,
|
773 |
-
selected_indices,
|
774 |
-
lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_scale_5, lora_scale_6,
|
775 |
-
lora_image_1, lora_image_2, lora_image_3, lora_image_4, lora_image_5, lora_image_6
|
776 |
-
]
|
777 |
-
)
|
778 |
-
randomize_button.click(
|
779 |
-
randomize_loras,
|
780 |
-
inputs=[selected_indices, loras_state],
|
781 |
-
outputs=[
|
782 |
-
selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_info_5, selected_info_6,
|
783 |
-
selected_indices,
|
784 |
-
lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_scale_5, lora_scale_6,
|
785 |
-
lora_image_1, lora_image_2, lora_image_3, lora_image_4, lora_image_5, lora_image_6,
|
786 |
-
prompt
|
787 |
-
]
|
788 |
-
)
|
789 |
-
add_custom_lora_button.click(
|
790 |
-
add_custom_lora,
|
791 |
-
inputs=[custom_lora, selected_indices, loras_state, gallery],
|
792 |
-
outputs=[
|
793 |
-
loras_state,
|
794 |
-
gallery,
|
795 |
-
selected_info_1, selected_info_2, selected_info_3, selected_info_4, selected_info_5, selected_info_6,
|
796 |
-
selected_indices,
|
797 |
-
lora_scale_1, lora_scale_2, lora_scale_3, lora_scale_4, lora_scale_5, lora_scale_6,
|
798 |
-
lora_image_1, lora_image_2, lora_image_3, lora_image_4, lora_image_5, lora_image_6
|
799 |
-
]
|
800 |
-
)
|
801 |
-
gr.on(
|
802 |
-
triggers=[generate_button.click, prompt.submit],
|
803 |
-
fn=run_lora,
|
804 |
inputs=[
|
805 |
-
prompt,
|
806 |
-
|
807 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
808 |
outputs=[result, seed, progress_bar]
|
809 |
).then(
|
810 |
fn=lambda x, history: update_history(x, history),
|
|
|
4 |
import logging
|
5 |
import torch
|
6 |
from PIL import Image
|
7 |
+
import spaces
|
8 |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
|
9 |
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
10 |
from diffusers.utils import load_image
|
|
|
14 |
import time
|
15 |
import requests
|
16 |
import pandas as pd
|
|
|
17 |
|
18 |
# Load prompts for randomization
|
19 |
df = pd.read_csv('prompts.csv', header=None)
|
|
|
81 |
file.write(response.content)
|
82 |
|
83 |
return filepath
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
def check_custom_model(link):
|
86 |
+
# Your existing implementation of check_custom_model
|
87 |
+
# ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
def update_history(new_image, history):
|
90 |
"""Updates the history gallery with the new image."""
|
|
|
116 |
#component-11{align-self: stretch;}
|
117 |
'''
|
118 |
|
119 |
+
with gr.Blocks(css=css, theme=gr.themes.Default(), delete_cache=(60, 60)) as app:
|
120 |
title = gr.HTML(
|
121 |
"""<h1><img src="https://i.imgur.com/wMh2Oek.png" alt="LoRA"> LoRA Lab [beta]</h1><br><span style="
|
122 |
margin-top: -25px !important;
|
|
|
127 |
)
|
128 |
loras_state = gr.State(loras)
|
129 |
selected_indices = gr.State([])
|
130 |
+
|
131 |
+
# Define UI components
|
132 |
with gr.Row():
|
133 |
with gr.Column(scale=3):
|
134 |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
|
135 |
with gr.Column(scale=1):
|
136 |
generate_button = gr.Button("Generate", variant="primary", elem_classes=["button_total"])
|
137 |
+
|
138 |
with gr.Row(elem_id="loaded_loras"):
|
139 |
+
randomize_button = gr.Button("🎲", variant="secondary", scale=1, elem_id="random_btn")
|
140 |
+
# We'll dynamically render the LoRA selections below using @gr.render
|
141 |
+
|
142 |
+
with gr.Group():
|
143 |
+
with gr.Row(elem_id="custom_lora_structure"):
|
144 |
+
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path or *.safetensors public URL", placeholder="multimodalart/vintage-ads-flux", scale=3, min_width=150)
|
145 |
+
add_custom_lora_button = gr.Button("Add Custom LoRA", elem_id="custom_lora_btn", scale=2, min_width=150)
|
146 |
+
remove_custom_lora_button = gr.Button("Remove Custom LoRA", visible=False)
|
147 |
+
gr.Markdown("[Check the list of FLUX LoRAs](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
148 |
+
gallery = gr.Gallery(
|
149 |
+
[(item["image"], item["title"]) for item in loras],
|
150 |
+
label="Or pick from the LoRA Explorer gallery",
|
151 |
+
allow_preview=False,
|
152 |
+
columns=5,
|
153 |
+
elem_id="gallery",
|
154 |
+
show_share_button=False,
|
155 |
+
interactive=True # Set to True to allow selection
|
156 |
+
)
|
157 |
+
progress_bar = gr.Markdown(elem_id="progress", visible=False)
|
158 |
+
result = gr.Image(label="Generated Image", interactive=False, show_share_button=False)
|
159 |
+
with gr.Accordion("History", open=False):
|
160 |
+
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
161 |
+
|
162 |
+
with gr.Accordion("Advanced Settings", open=False):
|
163 |
+
with gr.Row():
|
164 |
+
input_image = gr.Image(label="Input image", type="filepath", show_share_button=False)
|
165 |
+
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
with gr.Row():
|
168 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
169 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
|
|
|
|
|
|
|
|
170 |
|
171 |
+
with gr.Row():
|
172 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
173 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
174 |
|
175 |
+
with gr.Row():
|
176 |
+
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
177 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
178 |
+
|
179 |
+
# Define states for LoRA selections
|
180 |
+
selected_loras_state = gr.State([]) # List of selected LoRA indices
|
181 |
+
lora_scales_state = gr.State([]) # List of corresponding scales
|
182 |
+
|
183 |
+
# Function to handle gallery selection
|
184 |
+
@gr.render(inputs=[gallery], outputs=[], triggers=[gallery.select])
|
185 |
+
def update_lora_selection(selected_gallery):
|
186 |
+
selected_index = selected_gallery.index
|
187 |
+
selected_indices = selected_loras_state.value.copy()
|
188 |
+
if selected_index in selected_indices:
|
189 |
+
selected_indices.remove(selected_index)
|
190 |
+
else:
|
191 |
+
if len(selected_indices) < 6:
|
192 |
+
selected_indices.append(selected_index)
|
193 |
+
else:
|
194 |
+
gr.Warning("You can select up to 6 LoRAs. Remove one to select a new one.")
|
195 |
+
selected_loras_state.value = selected_indices
|
196 |
+
|
197 |
+
# Function to render the LoRA selection components dynamically
|
198 |
+
@gr.render(inputs=[selected_loras_state], outputs=[], triggers=[selected_loras_state.change])
|
199 |
+
def render_lora_selections(selected_indices):
|
200 |
+
lora_scales = lora_scales_state.value
|
201 |
+
if len(lora_scales) != len(selected_indices):
|
202 |
+
lora_scales = [1.15] * len(selected_indices)
|
203 |
+
lora_scales_state.value = lora_scales
|
204 |
+
|
205 |
+
# Clear previous components
|
206 |
+
gr.Markdown("### Selected LoRAs")
|
207 |
+
if not selected_indices:
|
208 |
+
gr.Markdown("No LoRAs selected.")
|
209 |
+
else:
|
210 |
+
for idx, sel_idx in enumerate(selected_indices):
|
211 |
+
lora = loras_state.value[sel_idx]
|
212 |
with gr.Row():
|
213 |
+
with gr.Column(scale=1, min_width=50):
|
214 |
+
gr.Image(value=lora['image'], interactive=False, show_label=False, height=50)
|
215 |
+
with gr.Column(scale=3):
|
216 |
+
gr.Markdown(f"### LoRA {idx+1}: [{lora['title']}](https://huggingface.co/{lora['repo']}) ✨")
|
217 |
+
with gr.Column(scale=2):
|
218 |
+
scale_slider = gr.Slider(label=f"Scale {idx+1}", minimum=0, maximum=3, step=0.01, value=lora_scales[idx])
|
219 |
+
scale_slider.change(lambda val, idx=idx: update_lora_scale(idx, val), inputs=[scale_slider], outputs=[])
|
220 |
+
with gr.Column(scale=1, min_width=50):
|
221 |
+
remove_btn = gr.Button("Remove", size="sm")
|
222 |
+
remove_btn.click(lambda idx=idx: remove_lora(idx), inputs=[], outputs=[])
|
223 |
+
|
224 |
+
# Helper function to update LoRA scales
|
225 |
+
def update_lora_scale(idx, value):
|
226 |
+
lora_scales = lora_scales_state.value
|
227 |
+
lora_scales[idx] = value
|
228 |
+
lora_scales_state.value = lora_scales
|
229 |
+
|
230 |
+
# Helper function to remove a LoRA
|
231 |
+
def remove_lora(idx):
|
232 |
+
selected_indices = selected_loras_state.value
|
233 |
+
lora_scales = lora_scales_state.value
|
234 |
+
if idx < len(selected_indices):
|
235 |
+
selected_indices.pop(idx)
|
236 |
+
lora_scales.pop(idx)
|
237 |
+
selected_loras_state.value = selected_indices
|
238 |
+
lora_scales_state.value = lora_scales
|
239 |
+
|
240 |
+
# Randomize LoRAs
|
241 |
+
def randomize_loras():
|
242 |
+
num_loras = min(6, len(loras_state.value))
|
243 |
+
selected_indices = random.sample(range(len(loras_state.value)), num_loras)
|
244 |
+
lora_scales = [1.15] * num_loras
|
245 |
+
selected_loras_state.value = selected_indices
|
246 |
+
lora_scales_state.value = lora_scales
|
247 |
+
random_prompt = random.choice(prompt_values)
|
248 |
+
prompt.value = random_prompt
|
249 |
+
|
250 |
+
randomize_button.click(randomize_loras, inputs=[], outputs=[])
|
251 |
+
|
252 |
+
# Add custom LoRA
|
253 |
+
def add_custom_lora_fn(custom_lora_input):
|
254 |
+
if custom_lora_input:
|
255 |
+
try:
|
256 |
+
title, repo, path, trigger_word, image = check_custom_model(custom_lora_input)
|
257 |
+
existing_item_index = next((index for (index, item) in enumerate(loras_state.value) if item['repo'] == repo), None)
|
258 |
+
if existing_item_index is None:
|
259 |
+
if repo.endswith(".safetensors") and repo.startswith("http"):
|
260 |
+
repo = download_file(repo)
|
261 |
+
new_item = {
|
262 |
+
"image": image if image else "/home/user/app/custom.png",
|
263 |
+
"title": title,
|
264 |
+
"repo": repo,
|
265 |
+
"weights": path,
|
266 |
+
"trigger_word": trigger_word
|
267 |
+
}
|
268 |
+
existing_item_index = len(loras_state.value)
|
269 |
+
loras_state.value.append(new_item)
|
270 |
+
# Update gallery
|
271 |
+
gallery.value = [(item["image"], item["title"]) for item in loras_state.value]
|
272 |
+
if len(selected_loras_state.value) < 6:
|
273 |
+
selected_loras_state.value.append(existing_item_index)
|
274 |
+
lora_scales_state.value.append(1.15)
|
275 |
+
else:
|
276 |
+
gr.Warning("You can select up to 6 LoRAs. Remove one to select a new one.")
|
277 |
+
except Exception as e:
|
278 |
+
gr.Warning(str(e))
|
279 |
+
|
280 |
+
add_custom_lora_button.click(add_custom_lora_fn, inputs=[custom_lora], outputs=[])
|
281 |
+
|
282 |
+
# Run the LoRA generation
|
283 |
+
@spaces.GPU(duration=75)
|
284 |
+
def run_lora(prompt_text, image_input_path, image_strength_value, cfg_scale_value, steps_value, randomize_seed_value, seed_value, width_value, height_value):
|
285 |
+
selected_indices = selected_loras_state.value
|
286 |
+
lora_scales = lora_scales_state.value
|
287 |
+
|
288 |
+
if not selected_indices:
|
289 |
+
raise gr.Error("You must select at least one LoRA before proceeding.")
|
290 |
+
|
291 |
+
selected_loras = [loras_state.value[idx] for idx in selected_indices]
|
292 |
+
|
293 |
+
# Build the prompt with trigger words
|
294 |
+
prepends = []
|
295 |
+
appends = []
|
296 |
+
for lora in selected_loras:
|
297 |
+
trigger_word = lora.get('trigger_word', '')
|
298 |
+
if trigger_word:
|
299 |
+
if lora.get("trigger_position") == "prepend":
|
300 |
+
prepends.append(trigger_word)
|
301 |
+
else:
|
302 |
+
appends.append(trigger_word)
|
303 |
+
prompt_mash = " ".join(prepends + [prompt_text] + appends)
|
304 |
+
print("Prompt Mash: ", prompt_mash)
|
305 |
+
# Unload previous LoRA weights
|
306 |
+
with calculateDuration("Unloading LoRA"):
|
307 |
+
pipe.unload_lora_weights()
|
308 |
+
pipe_i2i.unload_lora_weights()
|
309 |
+
|
310 |
+
print(pipe.get_active_adapters())
|
311 |
+
# Load LoRA weights with respective scales
|
312 |
+
lora_names = []
|
313 |
+
lora_weights = []
|
314 |
+
with calculateDuration("Loading LoRA weights"):
|
315 |
+
for idx, lora in enumerate(selected_loras):
|
316 |
+
lora_name = f"lora_{idx}"
|
317 |
+
lora_names.append(lora_name)
|
318 |
+
print(f"Lora Name: {lora_name}")
|
319 |
+
lora_weights.append(lora_scales[idx])
|
320 |
+
lora_path = lora['repo']
|
321 |
+
weight_name = lora.get("weights")
|
322 |
+
print(f"Lora Path: {lora_path}")
|
323 |
+
pipe_to_use = pipe_i2i if image_input_path is not None else pipe
|
324 |
+
pipe_to_use.load_lora_weights(
|
325 |
+
lora_path,
|
326 |
+
weight_name=weight_name if weight_name else None,
|
327 |
+
low_cpu_mem_usage=True,
|
328 |
+
adapter_name=lora_name
|
329 |
+
)
|
330 |
+
print("Loaded LoRAs:", lora_names)
|
331 |
+
print("Adapter weights:", lora_weights)
|
332 |
+
if image_input_path is not None:
|
333 |
+
pipe_i2i.set_adapters(lora_names, adapter_weights=lora_weights)
|
334 |
+
else:
|
335 |
+
pipe.set_adapters(lora_names, adapter_weights=lora_weights)
|
336 |
+
print(pipe.get_active_adapters())
|
337 |
+
# Set random seed for reproducibility
|
338 |
+
with calculateDuration("Randomizing seed"):
|
339 |
+
if randomize_seed_value:
|
340 |
+
seed_value = random.randint(0, MAX_SEED)
|
341 |
|
342 |
+
# Generate image
|
343 |
+
if image_input_path is not None:
|
344 |
+
final_image = generate_image_to_image(prompt_mash, image_input_path, image_strength_value, steps_value, cfg_scale_value, width_value, height_value, seed_value)
|
345 |
+
yield final_image, seed_value, gr.update(visible=False)
|
346 |
+
else:
|
347 |
+
image_generator = generate_image(prompt_mash, steps_value, seed_value, cfg_scale_value, width_value, height_value, progress=gr.Progress(track_tqdm=True))
|
348 |
+
# Consume the generator to get the final image
|
349 |
+
final_image = None
|
350 |
+
step_counter = 0
|
351 |
+
for image in image_generator:
|
352 |
+
step_counter += 1
|
353 |
+
final_image = image
|
354 |
+
progress_bar_html = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps_value};"></div></div>'
|
355 |
+
yield image, seed_value, gr.update(value=progress_bar_html, visible=True)
|
356 |
+
yield final_image, seed_value, gr.update(value=progress_bar_html, visible=False)
|
357 |
+
|
358 |
+
run_lora.zerogpu = True
|
359 |
+
|
360 |
+
# Bind the generate button to run_lora function
|
361 |
+
generate_button.click(
|
362 |
+
run_lora,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
inputs=[
|
364 |
+
prompt,
|
365 |
+
input_image,
|
366 |
+
image_strength,
|
367 |
+
cfg_scale,
|
368 |
+
steps,
|
369 |
+
randomize_seed,
|
370 |
+
seed,
|
371 |
+
width,
|
372 |
+
height
|
373 |
+
],
|
374 |
outputs=[result, seed, progress_bar]
|
375 |
).then(
|
376 |
fn=lambda x, history: update_history(x, history),
|