File size: 10,496 Bytes
9dd6fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import math
import typing as tp
import warnings

import torch
from torch import nn
from torch.nn import functional as F
from torch.nn.utils import spectral_norm, weight_norm


CONV_NORMALIZATIONS = frozenset(['none', 'weight_norm', 'spectral_norm',
                                 'time_group_norm'])


def apply_parametrization_norm(module: nn.Module, norm: str = 'none'):
    assert norm in CONV_NORMALIZATIONS
    if norm == 'weight_norm':
        return weight_norm(module)
    elif norm == 'spectral_norm':
        return spectral_norm(module)
    else:
        # We already check was in CONV_NORMALIZATION, so any other choice
        # doesn't need reparametrization.
        return module


def get_norm_module(module: nn.Module, causal: bool = False, norm: str = 'none', **norm_kwargs):
    """Return the proper normalization module. If causal is True, this will ensure the returned
    module is causal, or return an error if the normalization doesn't support causal evaluation.
    """
    assert norm in CONV_NORMALIZATIONS
    if norm == 'time_group_norm':
        if causal:
            raise ValueError("GroupNorm doesn't support causal evaluation.")
        assert isinstance(module, nn.modules.conv._ConvNd)
        return nn.GroupNorm(1, module.out_channels, **norm_kwargs)
    else:
        return nn.Identity()


def get_extra_padding_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int,
                                 padding_total: int = 0) -> int:
    """See `pad_for_conv1d`."""
    length = x.shape[-1]
    n_frames = (length - kernel_size + padding_total) / stride + 1
    ideal_length = (math.ceil(n_frames) - 1) * stride + (kernel_size - padding_total)
    return ideal_length - length


def pad_for_conv1d(x: torch.Tensor, kernel_size: int, stride: int, padding_total: int = 0):
    """Pad for a convolution to make sure that the last window is full.
    Extra padding is added at the end. This is required to ensure that we can rebuild
    an output of the same length, as otherwise, even with padding, some time steps
    might get removed.
    For instance, with total padding = 4, kernel size = 4, stride = 2:
        0 0 1 2 3 4 5 0 0   # (0s are padding)
        1   2   3           # (output frames of a convolution, last 0 is never used)
        0 0 1 2 3 4 5 0     # (output of tr. conv., but pos. 5 is going to get removed as padding)
            1 2 3 4         # once you removed padding, we are missing one time step !
    """
    extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
    return F.pad(x, (0, extra_padding))


def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'constant', value: float = 0.):
    """Tiny wrapper around F.pad, just to allow for reflect padding on small input.
    If this is the case, we insert extra 0 padding to the right before the reflection happen.
    """
    length = x.shape[-1]
    padding_left, padding_right = paddings
    assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
    if mode == 'reflect':
        max_pad = max(padding_left, padding_right)
        extra_pad = 0
        if length <= max_pad:
            extra_pad = max_pad - length + 1
            x = F.pad(x, (0, extra_pad))
        padded = F.pad(x, paddings, mode, value)
        end = padded.shape[-1] - extra_pad
        return padded[..., :end]
    else:
        return F.pad(x, paddings, mode, value)


def unpad1d(x: torch.Tensor, paddings: tp.Tuple[int, int]):
    """Remove padding from x, handling properly zero padding. Only for 1d!"""
    padding_left, padding_right = paddings
    assert padding_left >= 0 and padding_right >= 0, (padding_left, padding_right)
    assert (padding_left + padding_right) <= x.shape[-1]
    end = x.shape[-1] - padding_right
    return x[..., padding_left: end]


class NormConv1d(nn.Module):
    """Wrapper around Conv1d and normalization applied to this conv
    to provide a uniform interface across normalization approaches.
    """
    def __init__(self, *args, causal: bool = False, norm: str = 'none',
                 norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
        super().__init__()
        self.conv = apply_parametrization_norm(nn.Conv1d(*args, **kwargs), norm)
        self.norm = get_norm_module(self.conv, causal, norm, **norm_kwargs)
        self.norm_type = norm

    def forward(self, x):
        x = self.conv(x)
        x = self.norm(x)
        return x


class NormConv2d(nn.Module):
    """Wrapper around Conv2d and normalization applied to this conv
    to provide a uniform interface across normalization approaches.
    """
    def __init__(self, *args, norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
        super().__init__()
        self.conv = apply_parametrization_norm(nn.Conv2d(*args, **kwargs), norm)
        self.norm = get_norm_module(self.conv, causal=False, norm=norm, **norm_kwargs)
        self.norm_type = norm

    def forward(self, x):
        x = self.conv(x)
        x = self.norm(x)
        return x


class NormConvTranspose1d(nn.Module):
    """Wrapper around ConvTranspose1d and normalization applied to this conv
    to provide a uniform interface across normalization approaches.
    """
    def __init__(self, *args, causal: bool = False, norm: str = 'none',
                 norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
        super().__init__()
        self.convtr = apply_parametrization_norm(nn.ConvTranspose1d(*args, **kwargs), norm)
        self.norm = get_norm_module(self.convtr, causal, norm, **norm_kwargs)
        self.norm_type = norm

    def forward(self, x):
        x = self.convtr(x)
        x = self.norm(x)
        return x


class NormConvTranspose2d(nn.Module):
    """Wrapper around ConvTranspose2d and normalization applied to this conv
    to provide a uniform interface across normalization approaches.
    """
    def __init__(self, *args, norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {}, **kwargs):
        super().__init__()
        self.convtr = apply_parametrization_norm(nn.ConvTranspose2d(*args, **kwargs), norm)
        self.norm = get_norm_module(self.convtr, causal=False, norm=norm, **norm_kwargs)

    def forward(self, x):
        x = self.convtr(x)
        x = self.norm(x)
        return x


class StreamableConv1d(nn.Module):
    """Conv1d with some builtin handling of asymmetric or causal padding
    and normalization.
    """
    def __init__(self, in_channels: int, out_channels: int,
                 kernel_size: int, stride: int = 1, dilation: int = 1,
                 groups: int = 1, bias: bool = True, causal: bool = False,
                 norm: str = 'none', norm_kwargs: tp.Dict[str, tp.Any] = {},
                 pad_mode: str = 'reflect'):
        super().__init__()
        # warn user on unusual setup between dilation and stride
        if stride > 1 and dilation > 1:
            warnings.warn("StreamableConv1d has been initialized with stride > 1 and dilation > 1"
                          f" (kernel_size={kernel_size} stride={stride}, dilation={dilation}).")
        self.conv = NormConv1d(in_channels, out_channels, kernel_size, stride,
                               dilation=dilation, groups=groups, bias=bias, causal=causal,
                               norm=norm, norm_kwargs=norm_kwargs)
        self.causal = causal
        self.pad_mode = pad_mode

    def forward(self, x):
        B, C, T = x.shape
        kernel_size = self.conv.conv.kernel_size[0]
        stride = self.conv.conv.stride[0]
        dilation = self.conv.conv.dilation[0]
        kernel_size = (kernel_size - 1) * dilation + 1  # effective kernel size with dilations
        padding_total = kernel_size - stride
        extra_padding = get_extra_padding_for_conv1d(x, kernel_size, stride, padding_total)
        if self.causal:
            # Left padding for causal
            x = pad1d(x, (padding_total, extra_padding), mode=self.pad_mode)
        else:
            # Asymmetric padding required for odd strides
            padding_right = padding_total // 2
            padding_left = padding_total - padding_right
            x = pad1d(x, (padding_left, padding_right + extra_padding), mode=self.pad_mode)
        return self.conv(x)


class StreamableConvTranspose1d(nn.Module):
    """ConvTranspose1d with some builtin handling of asymmetric or causal padding
    and normalization.
    """
    def __init__(self, in_channels: int, out_channels: int,
                 kernel_size: int, stride: int = 1, causal: bool = False,
                 norm: str = 'none', trim_right_ratio: float = 1.,
                 norm_kwargs: tp.Dict[str, tp.Any] = {}):
        super().__init__()
        self.convtr = NormConvTranspose1d(in_channels, out_channels, kernel_size, stride,
                                          causal=causal, norm=norm, norm_kwargs=norm_kwargs)
        self.causal = causal
        self.trim_right_ratio = trim_right_ratio
        assert self.causal or self.trim_right_ratio == 1., \
            "`trim_right_ratio` != 1.0 only makes sense for causal convolutions"
        assert self.trim_right_ratio >= 0. and self.trim_right_ratio <= 1.

    def forward(self, x):
        kernel_size = self.convtr.convtr.kernel_size[0]
        stride = self.convtr.convtr.stride[0]
        padding_total = kernel_size - stride

        y = self.convtr(x)

        # We will only trim fixed padding. Extra padding from `pad_for_conv1d` would be
        # removed at the very end, when keeping only the right length for the output,
        # as removing it here would require also passing the length at the matching layer
        # in the encoder.
        if self.causal:
            # Trim the padding on the right according to the specified ratio
            # if trim_right_ratio = 1.0, trim everything from right
            padding_right = math.ceil(padding_total * self.trim_right_ratio)
            padding_left = padding_total - padding_right
            y = unpad1d(y, (padding_left, padding_right))
        else:
            # Asymmetric padding required for odd strides
            padding_right = padding_total // 2
            padding_left = padding_total - padding_right
            y = unpad1d(y, (padding_left, padding_right))
        return y