Spaces:
Sleeping
Sleeping
File size: 11,575 Bytes
e418eef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""Dataset of music tracks with rich metadata.
"""
from dataclasses import dataclass, field, fields, replace
import gzip
import json
import logging
from pathlib import Path
import random
import typing as tp
import torch
from .info_audio_dataset import (
InfoAudioDataset,
AudioInfo,
get_keyword_list,
get_keyword,
get_string
)
from ..modules.conditioners import (
ConditioningAttributes,
JointEmbedCondition,
WavCondition,
)
from ..utils.utils import warn_once
logger = logging.getLogger(__name__)
@dataclass
class MusicInfo(AudioInfo):
"""Segment info augmented with music metadata.
"""
# music-specific metadata
title: tp.Optional[str] = None
artist: tp.Optional[str] = None # anonymized artist id, used to ensure no overlap between splits
key: tp.Optional[str] = None
bpm: tp.Optional[float] = None
genre: tp.Optional[str] = None
moods: tp.Optional[list] = None
keywords: tp.Optional[list] = None
description: tp.Optional[str] = None
name: tp.Optional[str] = None
instrument: tp.Optional[str] = None
# original wav accompanying the metadata
self_wav: tp.Optional[WavCondition] = None
# dict mapping attributes names to tuple of wav, text and metadata
joint_embed: tp.Dict[str, JointEmbedCondition] = field(default_factory=dict)
@property
def has_music_meta(self) -> bool:
return self.name is not None
def to_condition_attributes(self) -> ConditioningAttributes:
out = ConditioningAttributes()
for _field in fields(self):
key, value = _field.name, getattr(self, _field.name)
if key == 'self_wav':
out.wav[key] = value
elif key == 'joint_embed':
for embed_attribute, embed_cond in value.items():
out.joint_embed[embed_attribute] = embed_cond
else:
if isinstance(value, list):
value = ' '.join(value)
out.text[key] = value
return out
@staticmethod
def attribute_getter(attribute):
if attribute == 'bpm':
preprocess_func = get_bpm
elif attribute == 'key':
preprocess_func = get_musical_key
elif attribute in ['moods', 'keywords']:
preprocess_func = get_keyword_list
elif attribute in ['genre', 'name', 'instrument']:
preprocess_func = get_keyword
elif attribute in ['title', 'artist', 'description']:
preprocess_func = get_string
else:
preprocess_func = None
return preprocess_func
@classmethod
def from_dict(cls, dictionary: dict, fields_required: bool = False):
_dictionary: tp.Dict[str, tp.Any] = {}
# allow a subset of attributes to not be loaded from the dictionary
# these attributes may be populated later
post_init_attributes = ['self_wav', 'joint_embed']
optional_fields = ['keywords']
for _field in fields(cls):
if _field.name in post_init_attributes:
continue
elif _field.name not in dictionary:
if fields_required and _field.name not in optional_fields:
raise KeyError(f"Unexpected missing key: {_field.name}")
else:
preprocess_func: tp.Optional[tp.Callable] = cls.attribute_getter(_field.name)
value = dictionary[_field.name]
if preprocess_func:
value = preprocess_func(value)
_dictionary[_field.name] = value
return cls(**_dictionary)
def augment_music_info_description(music_info: MusicInfo, merge_text_p: float = 0.,
drop_desc_p: float = 0., drop_other_p: float = 0.) -> MusicInfo:
"""Augment MusicInfo description with additional metadata fields and potential dropout.
Additional textual attributes are added given probability 'merge_text_conditions_p' and
the original textual description is dropped from the augmented description given probability drop_desc_p.
Args:
music_info (MusicInfo): The music metadata to augment.
merge_text_p (float): Probability of merging additional metadata to the description.
If provided value is 0, then no merging is performed.
drop_desc_p (float): Probability of dropping the original description on text merge.
if provided value is 0, then no drop out is performed.
drop_other_p (float): Probability of dropping the other fields used for text augmentation.
Returns:
MusicInfo: The MusicInfo with augmented textual description.
"""
def is_valid_field(field_name: str, field_value: tp.Any) -> bool:
valid_field_name = field_name in ['key', 'bpm', 'genre', 'moods', 'instrument', 'keywords']
valid_field_value = field_value is not None and isinstance(field_value, (int, float, str, list))
keep_field = random.uniform(0, 1) < drop_other_p
return valid_field_name and valid_field_value and keep_field
def process_value(v: tp.Any) -> str:
if isinstance(v, (int, float, str)):
return str(v)
if isinstance(v, list):
return ", ".join(v)
else:
raise ValueError(f"Unknown type for text value! ({type(v), v})")
description = music_info.description
metadata_text = ""
if random.uniform(0, 1) < merge_text_p:
meta_pairs = [f'{_field.name}: {process_value(getattr(music_info, _field.name))}'
for _field in fields(music_info) if is_valid_field(_field.name, getattr(music_info, _field.name))]
random.shuffle(meta_pairs)
metadata_text = ". ".join(meta_pairs)
description = description if not random.uniform(0, 1) < drop_desc_p else None
logger.debug(f"Applying text augmentation on MMI info. description: {description}, metadata: {metadata_text}")
if description is None:
description = metadata_text if len(metadata_text) > 1 else None
else:
description = ". ".join([description.rstrip('.'), metadata_text])
description = description.strip() if description else None
music_info = replace(music_info)
music_info.description = description
return music_info
class Paraphraser:
def __init__(self, paraphrase_source: tp.Union[str, Path], paraphrase_p: float = 0.):
self.paraphrase_p = paraphrase_p
open_fn = gzip.open if str(paraphrase_source).lower().endswith('.gz') else open
with open_fn(paraphrase_source, 'rb') as f: # type: ignore
self.paraphrase_source = json.loads(f.read())
logger.info(f"loaded paraphrasing source from: {paraphrase_source}")
def sample_paraphrase(self, audio_path: str, description: str):
if random.random() >= self.paraphrase_p:
return description
info_path = Path(audio_path).with_suffix('.json')
if info_path not in self.paraphrase_source:
warn_once(logger, f"{info_path} not in paraphrase source!")
return description
new_desc = random.choice(self.paraphrase_source[info_path])
logger.debug(f"{description} -> {new_desc}")
return new_desc
class MusicDataset(InfoAudioDataset):
"""Music dataset is an AudioDataset with music-related metadata.
Args:
info_fields_required (bool): Whether to enforce having required fields.
merge_text_p (float): Probability of merging additional metadata to the description.
drop_desc_p (float): Probability of dropping the original description on text merge.
drop_other_p (float): Probability of dropping the other fields used for text augmentation.
joint_embed_attributes (list[str]): A list of attributes for which joint embedding metadata is returned.
paraphrase_source (str, optional): Path to the .json or .json.gz file containing the
paraphrases for the description. The json should be a dict with keys are the
original info path (e.g. track_path.json) and each value is a list of possible
paraphrased.
paraphrase_p (float): probability of taking a paraphrase.
See `audiocraft.data.info_audio_dataset.InfoAudioDataset` for full initialization arguments.
"""
def __init__(self, *args, info_fields_required: bool = True,
merge_text_p: float = 0., drop_desc_p: float = 0., drop_other_p: float = 0.,
joint_embed_attributes: tp.List[str] = [],
paraphrase_source: tp.Optional[str] = None, paraphrase_p: float = 0,
**kwargs):
kwargs['return_info'] = True # We require the info for each song of the dataset.
super().__init__(*args, **kwargs)
self.info_fields_required = info_fields_required
self.merge_text_p = merge_text_p
self.drop_desc_p = drop_desc_p
self.drop_other_p = drop_other_p
self.joint_embed_attributes = joint_embed_attributes
self.paraphraser = None
if paraphrase_source is not None:
self.paraphraser = Paraphraser(paraphrase_source, paraphrase_p)
def __getitem__(self, index):
wav, info = super().__getitem__(index)
info_data = info.to_dict()
music_info_path = Path(info.meta.path).with_suffix('.json')
if Path(music_info_path).exists():
with open(music_info_path, 'r') as json_file:
music_data = json.load(json_file)
music_data.update(info_data)
music_info = MusicInfo.from_dict(music_data, fields_required=self.info_fields_required)
if self.paraphraser is not None:
music_info.description = self.paraphraser.sample(music_info.meta.path, music_info.description)
if self.merge_text_p:
music_info = augment_music_info_description(
music_info, self.merge_text_p, self.drop_desc_p, self.drop_other_p)
else:
music_info = MusicInfo.from_dict(info_data, fields_required=False)
music_info.self_wav = WavCondition(
wav=wav[None], length=torch.tensor([info.n_frames]),
sample_rate=[info.sample_rate], path=[info.meta.path], seek_time=[info.seek_time])
for att in self.joint_embed_attributes:
att_value = getattr(music_info, att)
joint_embed_cond = JointEmbedCondition(
wav[None], [att_value], torch.tensor([info.n_frames]),
sample_rate=[info.sample_rate], path=[info.meta.path], seek_time=[info.seek_time])
music_info.joint_embed[att] = joint_embed_cond
return wav, music_info
def get_musical_key(value: tp.Optional[str]) -> tp.Optional[str]:
"""Preprocess key keywords, discarding them if there are multiple key defined."""
if value is None or (not isinstance(value, str)) or len(value) == 0 or value == 'None':
return None
elif ',' in value:
# For now, we discard when multiple keys are defined separated with comas
return None
else:
return value.strip().lower()
def get_bpm(value: tp.Optional[str]) -> tp.Optional[float]:
"""Preprocess to a float."""
if value is None:
return None
try:
return float(value)
except ValueError:
return None
|