File size: 8,737 Bytes
982b37b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""
Multi Band Diffusion models as described in
"From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion"
(paper link).
"""

import typing as tp

import torch
import julius

from .unet import DiffusionUnet
from ..modules.diffusion_schedule import NoiseSchedule
from .encodec import CompressionModel
from ..solvers.compression import CompressionSolver
from .loaders import load_compression_model, load_diffusion_models


class DiffusionProcess:
    """Sampling for a diffusion Model.

    Args:
        model (DiffusionUnet): Diffusion U-Net model.
        noise_schedule (NoiseSchedule): Noise schedule for diffusion process.
    """
    def __init__(self, model: DiffusionUnet, noise_schedule: NoiseSchedule) -> None:
        self.model = model
        self.schedule = noise_schedule

    def generate(self, condition: torch.Tensor, initial_noise: torch.Tensor,
                 step_list: tp.Optional[tp.List[int]] = None):
        """Perform one diffusion process to generate one of the bands.

        Args:
            condition (torch.Tensor): The embeddings from the compression model.
            initial_noise (torch.Tensor): The initial noise to start the process.
        """
        return self.schedule.generate_subsampled(model=self.model, initial=initial_noise, step_list=step_list,
                                                 condition=condition)


class MultiBandDiffusion:
    """Sample from multiple diffusion models.

    Args:
        DPs (list of DiffusionProcess): Diffusion processes.
        codec_model (CompressionModel): Underlying compression model used to obtain discrete tokens.
    """
    def __init__(self, DPs: tp.List[DiffusionProcess], codec_model: CompressionModel) -> None:
        self.DPs = DPs
        self.codec_model = codec_model
        self.device = next(self.codec_model.parameters()).device

    @property
    def sample_rate(self) -> int:
        return self.codec_model.sample_rate

    @staticmethod
    def get_mbd_musicgen(device=None):
        """Load our diffusion models trained for MusicGen."""
        if device is None:
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
        path = 'facebook/multiband-diffusion'
        filename = 'mbd_musicgen_32khz.th'
        name = 'facebook/musicgen-small'
        codec_model = load_compression_model(name, device=device)
        models, processors, cfgs = load_diffusion_models(path, filename=filename, device=device)
        DPs = []
        for i in range(len(models)):
            schedule = NoiseSchedule(**cfgs[i].schedule, sample_processor=processors[i], device=device)
            DPs.append(DiffusionProcess(model=models[i], noise_schedule=schedule))
        return MultiBandDiffusion(DPs=DPs, codec_model=codec_model)

    @staticmethod
    def get_mbd_24khz(bw: float = 3.0,
                      device: tp.Optional[tp.Union[torch.device, str]] = None,
                      n_q: tp.Optional[int] = None):
        """Get the pretrained Models for MultibandDiffusion.

        Args:
            bw (float): Bandwidth of the compression model.
            device (torch.device or str, optional): Device on which the models are loaded.
            n_q (int, optional): Number of quantizers to use within the compression model.
        """
        if device is None:
            device = 'cuda' if torch.cuda.is_available() else 'cpu'
        assert bw in [1.5, 3.0, 6.0], f"bandwidth {bw} not available"
        if n_q is not None:
            assert n_q in [2, 4, 8]
            assert {1.5: 2, 3.0: 4, 6.0: 8}[bw] == n_q, \
                f"bandwidth and number of codebooks missmatch to use n_q = {n_q} bw should be {n_q * (1.5 / 2)}"
        n_q = {1.5: 2, 3.0: 4, 6.0: 8}[bw]
        codec_model = CompressionSolver.model_from_checkpoint(
            '//pretrained/facebook/encodec_24khz', device=device)
        codec_model.set_num_codebooks(n_q)
        codec_model = codec_model.to(device)
        path = 'facebook/multiband-diffusion'
        filename = f'mbd_comp_{n_q}.pt'
        models, processors, cfgs = load_diffusion_models(path, filename=filename, device=device)
        DPs = []
        for i in range(len(models)):
            schedule = NoiseSchedule(**cfgs[i].schedule, sample_processor=processors[i], device=device)
            DPs.append(DiffusionProcess(model=models[i], noise_schedule=schedule))
        return MultiBandDiffusion(DPs=DPs, codec_model=codec_model)

    @torch.no_grad()
    def get_condition(self, wav: torch.Tensor, sample_rate: int) -> torch.Tensor:
        """Get the conditioning (i.e. latent representations of the compression model) from a waveform.
        Args:
            wav (torch.Tensor): The audio that we want to extract the conditioning from.
            sample_rate (int): Sample rate of the audio."""
        if sample_rate != self.sample_rate:
            wav = julius.resample_frac(wav, sample_rate, self.sample_rate)
        codes, scale = self.codec_model.encode(wav)
        assert scale is None, "Scaled compression models not supported."
        emb = self.get_emb(codes)
        return emb

    @torch.no_grad()
    def get_emb(self, codes: torch.Tensor):
        """Get latent representation from the discrete codes.
        Args:
            codes (torch.Tensor): Discrete tokens."""
        emb = self.codec_model.decode_latent(codes)
        return emb

    def generate(self, emb: torch.Tensor, size: tp.Optional[torch.Size] = None,
                 step_list: tp.Optional[tp.List[int]] = None):
        """Generate waveform audio from the latent embeddings of the compression model.
        Args:
            emb (torch.Tensor): Conditioning embeddings
            size (None, torch.Size): Size of the output
                if None this is computed from the typical upsampling of the model.
            step_list (list[int], optional): list of Markov chain steps, defaults to 50 linearly spaced step.
        """
        if size is None:
            upsampling = int(self.codec_model.sample_rate / self.codec_model.frame_rate)
            size = torch.Size([emb.size(0), self.codec_model.channels, emb.size(-1) * upsampling])
        assert size[0] == emb.size(0)
        out = torch.zeros(size).to(self.device)
        for DP in self.DPs:
            out += DP.generate(condition=emb, step_list=step_list, initial_noise=torch.randn_like(out))
        return out

    def re_eq(self, wav: torch.Tensor, ref: torch.Tensor, n_bands: int = 32, strictness: float = 1):
        """Match the eq to the encodec output by matching the standard deviation of some frequency bands.
        Args:
            wav (torch.Tensor): Audio to equalize.
            ref (torch.Tensor): Reference audio from which we match the spectrogram.
            n_bands (int): Number of bands of the eq.
            strictness (float): How strict the matching. 0 is no matching, 1 is exact matching.
        """
        split = julius.SplitBands(n_bands=n_bands, sample_rate=self.codec_model.sample_rate).to(wav.device)
        bands = split(wav)
        bands_ref = split(ref)
        out = torch.zeros_like(ref)
        for i in range(n_bands):
            out += bands[i] * (bands_ref[i].std() / bands[i].std()) ** strictness
        return out

    def regenerate(self, wav: torch.Tensor, sample_rate: int):
        """Regenerate a waveform through compression and diffusion regeneration.
        Args:
            wav (torch.Tensor): Original 'ground truth' audio.
            sample_rate (int): Sample rate of the input (and output) wav.
        """
        if sample_rate != self.codec_model.sample_rate:
            wav = julius.resample_frac(wav, sample_rate, self.codec_model.sample_rate)
        emb = self.get_condition(wav, sample_rate=self.codec_model.sample_rate)
        size = wav.size()
        out = self.generate(emb, size=size)
        if sample_rate != self.codec_model.sample_rate:
            out = julius.resample_frac(out, self.codec_model.sample_rate, sample_rate)
        return out

    def tokens_to_wav(self, tokens: torch.Tensor, n_bands: int = 32):
        """Generate Waveform audio with diffusion from the discrete codes.
        Args:
            tokens (torch.Tensor): Discrete codes.
            n_bands (int): Bands for the eq matching.
        """
        wav_encodec = self.codec_model.decode(tokens)
        condition = self.get_emb(tokens)
        wav_diffusion = self.generate(emb=condition, size=wav_encodec.size())
        return self.re_eq(wav=wav_diffusion, ref=wav_encodec, n_bands=n_bands)