Spaces:
Sleeping
Sleeping
File size: 12,387 Bytes
e3061ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from omegaconf import DictConfig
from . import builders, musicgen
from einops import rearrange
from torch.nn import functional as F
from ..modules.conditioners import SegmentWithAttributes
import torch
import numpy as np
import random
import typing as tp
import math
import flashy
class MagnetSolver(musicgen.MusicGenSolver):
"""Solver for MAGNeT - Masked Audio Generation using
a single Non-autoregressive Transformer https://arxiv.org/abs/2401.04577.
"""
def __init__(self, cfg: DictConfig):
super().__init__(cfg)
# initialize generation parameters by config
self.generation_params = {
'use_sampling': self.cfg.generate.lm.use_sampling,
'temp': self.cfg.generate.lm.temp,
'top_k': self.cfg.generate.lm.top_k,
'top_p': self.cfg.generate.lm.top_p,
'max_cfg_coef': self.cfg.generate.lm.max_cfg_coef,
'min_cfg_coef': self.cfg.generate.lm.min_cfg_coef,
'decoding_steps': list(self.cfg.generate.lm.decoding_steps),
'anneal_temp': self.cfg.generate.lm.anneal_temp,
'span_scoring': self.cfg.generate.lm.span_scoring,
'span_arrangement': self.cfg.generate.lm.span_arrangement
}
sequence_len = int(cfg.dataset.segment_duration * self.compression_model.frame_rate)
self.mean_maskrate_to_u = torch.tensor(self._calc_mean_maskrate_to_u_LUT(sequence_len), device=self.device)
self.ce_per_codebook = [torch.log(torch.tensor(self.compression_model.cardinality, device=self.device))
for _ in range(cfg.transformer_lm.n_q)]
def build_model(self) -> None:
self.cfg.transformer_lm.segment_duration = self.cfg.dataset.segment_duration
self.cfg.transformer_lm.span_len = self.cfg.masking.span_len
assert self.cfg.efficient_attention_backend == "xformers", "MAGNeT v1 models support only xformers backend."
super().build_model()
def _calc_mean_maskrate_to_u_LUT(self, T: int):
""" Create a Look Up Table (LUT) transforming a discrete masking percentage m in 0,1,...,100 to u,
the number of overlapping spans of length L to place s.t. the masking rate is approximately m/float(100).
It first creates the inverse transformation, of the masking rate as function of u,
using the expression choose(T - L, u) / choose(T, u), where L is the atomic span length used
during masking. See https://arxiv.org/abs/2401.04577,
appendix C, for the mean mask rate derivation.
We leverage the fact that:
choose(T - L, u) / choose(T, u) = Prod_{j = 0}^{u - 1}((T - L - j)/(T - j))
in the provided implementation, in order to avoid overflow.
Args:
T (float): Sequence length.
Returns:
(List) A LUT transforming m in 0,1,...,100 to u,
s.t. the masking rate of the span-L mask is approximately m/float(100).
"""
L = self.cfg.masking.span_len
u2mean = [0.0] # mean mask rate is 0.0 for u = 0
v = (T - L) / float(T)
for u in range(1, T):
u2mean.append(1 - v)
v *= (T - L - u) / (T - u) # Overflow-safe implementation of choose(T - L, u) / choose(T, u).
mean2u = []
for maskperc in range(101):
maskrate = maskperc / float(100)
u = int(np.searchsorted(u2mean, maskrate))
mean2u.append(u)
return mean2u
def _non_spans_mask(self, mask_probs: torch.Tensor, B: int, T: int, device: torch.device) -> torch.Tensor:
""" Construct a boolean mask of shape [B, T, 1], with masking rates defined by mask_probs.
The masked tokens are singletons, placed uniformly at random.
Args:
mask_probs (torch.Tensor): The desired masking rate per sample, of shape [B,]
B (int): Batch size.
T (int): Sequence length.
device (torch.device): device of the output tensor
Returns:
(torch.Tensor): A mask of shape [B, T]
"""
num_token_masked = (T * mask_probs).round().clamp(min=1)
batch_randperm = torch.rand((B, T), device=device).argsort(dim=-1)
return batch_randperm < rearrange(num_token_masked, 'b -> b 1')
def _spans_mask(self, mask_probs: torch.Tensor, B: int, T: int, device: torch.device) -> torch.Tensor:
""" Construct a spans mask with masking rates defined by mask_probs,
where the atomic span length ( > 1 ) is defined by cfg.masking.span_len.
Args:
mask_probs (torch.Tensor): The desired masking rate per sample, of shape [B,]
B (int): Batch size.
T (int): Sequence length.
device (torch.device): device of the output tensor
Returns:
(torch.Tensor): A spans mask of shape [B, T]
"""
rounded_probs = torch.round(100 * mask_probs).long()
k = self.mean_maskrate_to_u[rounded_probs].clamp(min=1) # k is the number of span starts
# sample random span starts
batch_randperm = torch.rand((B, T), device=device).argsort(dim=-1)
mask = batch_randperm < rearrange(k, 'b -> b 1')
B, T = mask.shape
shifted_mask = mask.clone()
for _ in range(self.cfg.masking.span_len - 1):
shifted_mask = torch.concat((torch.full((B, 1), False, device=device), shifted_mask[:, :-1]), dim=1)
mask = torch.logical_or(mask, shifted_mask)
return mask
def _get_mask(self, mask_probs: torch.Tensor, B: int, T: int, device: torch.device) -> torch.Tensor:
""" Construct a boolean mask with masking rates defined by mask_probs, and atomic
span length defined by cfg.masking.span_len.
Args:
mask_probs (torch.Tensor): The desired masking rate per sample, of shape [B,]
B (int): Batch size.
T (int): Sequence length.
device (torch.device): device of the output tensor
Returns:
(torch.Tensor): A boolean tensor of shape [B, T]
"""
if self.cfg.masking.span_len <= 1:
return self._non_spans_mask(mask_probs, B, T, device)
return self._spans_mask(mask_probs, B, T, device)
def _compute_cross_entropy_magnet(self, logits: torch.Tensor,
targets: torch.Tensor, mask: torch.Tensor, stage: torch.Tensor) -> torch.Tensor:
""" Compute cross entropy between multi-codebook targets and model's logits.
The cross entropy is computed only on a specific codebook, defined by the stage argument.
Valid timesteps for each codebook are pulled from the mask, where invalid
timesteps are set to 0.
Args:
logits (torch.Tensor): Model's logits of shape [B, K, T, card].
targets (torch.Tensor): Target codes, of shape [B, K, T].
mask (torch.Tensor): Mask for valid target codes, of shape [B, K, T].
stage (torch.Tensor): The codebook (idx) that is being optimized, as a scalar tensor.
Returns:
ce (torch.Tensor): Cross entropy of the codebook that is being optimized.
"""
assert logits.shape[:-1] == targets.shape
assert mask.shape == targets.shape
ce = torch.zeros([], device=targets.device)
logits_k = logits[:, stage, ...].contiguous().view(-1, logits.size(-1)) # [B x T, card]
targets_k = targets[:, stage, ...].contiguous().view(-1) # [B x T]
mask_k = mask[:, stage, ...].contiguous().view(-1) # [B x T]
IGNORE_IDX = -1
targets_k[~mask_k] = IGNORE_IDX
q_ce = F.cross_entropy(logits_k, targets_k, ignore_index=IGNORE_IDX)
ce += q_ce
return ce
def run_step(self, idx: int, batch: tp.Tuple[torch.Tensor, tp.List[SegmentWithAttributes]], metrics: dict) -> dict:
"""Perform one training or valid step on a given batch."""
check_synchronization_points = idx == 1 and self.device == 'cuda'
condition_tensors, audio_tokens, padding_mask = self._prepare_tokens_and_attributes(
batch, check_synchronization_points)
self.deadlock_detect.update('tokens_and_conditions')
if check_synchronization_points:
torch.cuda.set_sync_debug_mode('warn')
B, K, T = audio_tokens.shape
device = self.device
# Choose the stage (codebook idx) for update, uniformly at random.
stage_ = random.randint(0, K - 1)
stage = torch.full((1, ), stage_, device=device)
# masking
rand_time = torch.zeros((B,), device=device).float().uniform_(0, 1)
rand_mask_probs = torch.cos(rand_time * math.pi * 0.5)
# stage mask
stage_mask = self._get_mask(rand_mask_probs, B, T, device) # [B, T]
stage_mask = stage_mask.unsqueeze(1) # [B, 1, T]
# Keep all preceding codebooks.
mask = torch.full((B, K, T), False, device=device)
mask[:, stage, :] = stage_mask
# Mask all codebooks larger than stage_
mask_id = self.model.special_token_id
mask[:, (stage_+1):, :] = torch.full((B, K - stage_ - 1, T), True, device=device)
input_tokens = torch.where(mask, mask_id, audio_tokens)
# Take loss only on the chosen stage, and only on the masked tokens.
loss_mask = torch.full((B, K, T), False, device=device)
loss_mask[:, stage, :] = stage_mask
with self.autocast:
model_output = self.model.compute_predictions(input_tokens, [], condition_tensors, stage=stage_)
logits = model_output.logits
loss_mask &= padding_mask
ce = self._compute_cross_entropy_magnet(logits, audio_tokens, loss_mask, stage)
loss = ce
self.deadlock_detect.update('loss')
if check_synchronization_points:
torch.cuda.set_sync_debug_mode('default')
if self.is_training:
metrics['lr'] = self.optimizer.param_groups[0]['lr']
if self.scaler is not None:
loss = self.scaler.scale(loss)
self.deadlock_detect.update('scale')
if self.cfg.fsdp.use:
loss.backward()
flashy.distrib.average_tensors(self.model.buffers())
elif self.cfg.optim.eager_sync:
with flashy.distrib.eager_sync_model(self.model):
loss.backward()
else:
# this should always be slower but can be useful
# for weird use cases like multiple backwards.
loss.backward()
flashy.distrib.sync_model(self.model)
self.deadlock_detect.update('backward')
if self.scaler is not None:
self.scaler.unscale_(self.optimizer)
if self.cfg.optim.max_norm:
if self.cfg.fsdp.use:
metrics['grad_norm'] = self.model.clip_grad_norm_(self.cfg.optim.max_norm) # type: ignore
else:
metrics['grad_norm'] = torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.cfg.optim.max_norm
)
if self.scaler is None:
self.optimizer.step()
else:
self.scaler.step(self.optimizer)
self.scaler.update()
if self.lr_scheduler:
self.lr_scheduler.step()
self.optimizer.zero_grad()
self.deadlock_detect.update('optim')
if self.scaler is not None:
scale = self.scaler.get_scale()
metrics['grad_scale'] = scale
if not loss.isfinite().all():
raise RuntimeError("Model probably diverged.")
metrics['ce'] = ce
metrics['ppl'] = torch.exp(ce)
return metrics
class AudioMagnetSolver(MagnetSolver):
"""Solver for audio-MAGNeT. A MAGNeT model for sound generation.
More information can be found in the MAGNeT model card.
"""
DATASET_TYPE: builders.DatasetType = builders.DatasetType.SOUND
|