zonic-generator / audiocraft /grids /musicgen /musicgen_melody_32khz.py
unpairedelectron07's picture
Upload 7 files
8860e6a verified
raw
history blame
2.25 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from ._explorers import LMExplorer
from ...environment import AudioCraftEnvironment
@LMExplorer
def explorer(launcher):
partitions = AudioCraftEnvironment.get_slurm_partitions(['team', 'global'])
launcher.slurm_(gpus=32, partition=partitions)
launcher.bind_(solver='musicgen/musicgen_melody_32khz')
# replace this by the desired music dataset
launcher.bind_(dset='internal/music_400k_32khz')
fsdp = {'autocast': False, 'fsdp.use': True}
medium = {'model/lm/model_scale': 'medium'}
large = {'model/lm/model_scale': 'large'}
cfg_low = {'classifier_free_guidance.training_dropout': 0.2}
wd_low = {'conditioners.description.t5.word_dropout': 0.2}
adam = {'optim.optimizer': 'adamw', 'optim.lr': 1e-4}
cache_path = {'conditioners.self_wav.chroma_stem.cache_path':
'/fsx-audio-craft-llm/jadecopet/experiments/audiocraft/caches/chroma_stem'}
# CACHE GENERATION JOBS
n_cache_gen_jobs = 4
gen_sub = launcher.slurm(gpus=1)
gen_sub.bind_(
cache_path, {
# the cache is always computed over the whole file, so duration doesn't matter here.
'dataset.segment_duration': 2.,
'dataset.batch_size': 8,
'dataset.train.permutation_on_files': True, # try to not repeat files.
'optim.epochs': 10,
'model/lm/model_scale': 'xsmall',
})
with gen_sub.job_array():
for gen_job in range(n_cache_gen_jobs):
gen_sub({'dataset.train.shuffle_seed': gen_job})
# ACTUAL TRAINING JOBS.
launcher.bind_(fsdp)
launcher.slurm_(gpus=32).bind_(label='32gpus')
with launcher.job_array():
sub = launcher.bind()
sub()
sub(cache_path)
launcher.slurm_(gpus=64).bind_(label='64gpus')
with launcher.job_array():
sub = launcher.bind()
sub(medium, adam)
launcher.slurm_(gpus=96).bind_(label='96gpus')
with launcher.job_array():
sub = launcher.bind()
sub(large, cfg_low, wd_low, adam, {'optim.max_norm': 3})