Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
description = """
|
4 |
+
<p>
|
5 |
+
<center>
|
6 |
+
This bot was trained on a dataset of 1000 movie reviews from IMDB. It can suggest movies similar to the one you liked!
|
7 |
+
<img src="https://huggingface.co/spaces/kingabzpro/Rick_and_Morty_Bot/resolve/main/img/rick.png" alt="rick" width="200"/>
|
8 |
+
</center>
|
9 |
+
</p>
|
10 |
+
"""
|
11 |
+
model = pipeline("text-generation", model="charoori/llm4movies")
|
12 |
+
|
13 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
14 |
+
import torch
|
15 |
+
|
16 |
+
base_model_id = "mistralai/Mistral-7B-v0.1"
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
18 |
+
base_model_id,
|
19 |
+
add_bos_token=True,
|
20 |
+
)
|
21 |
+
model = AutoModelForCausalLM.from_pretrained("charoori/llm4movies")
|
22 |
+
|
23 |
+
def predict(input, history=[]):
|
24 |
+
# tokenize the new input sentence
|
25 |
+
new_user_input_ids = tokenizer.encode(input, return_tensors='pt')
|
26 |
+
|
27 |
+
# append the new user input tokens to the chat history
|
28 |
+
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
|
29 |
+
|
30 |
+
# generate a response
|
31 |
+
# model_input = tokenizer(eval_prompt, return_tensors="pt")
|
32 |
+
history = model.generate(bot_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id).tolist()
|
33 |
+
|
34 |
+
# convert the tokens to text, and then split the responses into lines
|
35 |
+
response = tokenizer.decode(model.generate(**bot_input_ids, max_new_tokens=256, repetition_penalty=1.15)[0], skip_special_tokens=True)
|
36 |
+
|
37 |
+
# response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
38 |
+
#print('decoded_response-->>'+str(response))
|
39 |
+
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list
|
40 |
+
#print('response-->>'+str(response))
|
41 |
+
return response, history
|
42 |
+
|
43 |
+
|
44 |
+
interface = gr.Interface(
|
45 |
+
fn=predict,
|
46 |
+
title = "Find your next movie!",
|
47 |
+
inputs="textbox",
|
48 |
+
outputs="text",
|
49 |
+
description=description,
|
50 |
+
examples=[["I liked the movie Matrix because it was very interesting and had a great story. Suggest something similar"]]
|
51 |
+
)
|
52 |
+
interface.launch()
|
53 |
+
|