import gradio as gr from transformers import pipeline description = """

This bot was trained on a dataset of 1000 movie reviews from IMDB. It can suggest movies similar to the one you liked! rick

""" model = pipeline("text-generation", model="charoori/llm4movies") from transformers import AutoModelForCausalLM, AutoTokenizer import torch base_model_id = "mistralai/Mistral-7B-v0.1" tokenizer = AutoTokenizer.from_pretrained( base_model_id, add_bos_token=True, ) model = AutoModelForCausalLM.from_pretrained("charoori/llm4movies") def predict(input, history=[]): # tokenize the new input sentence new_user_input_ids = tokenizer.encode(input, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) # generate a response # model_input = tokenizer(eval_prompt, return_tensors="pt") history = model.generate(bot_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id).tolist() # convert the tokens to text, and then split the responses into lines response = tokenizer.decode(model.generate(**bot_input_ids, max_new_tokens=256, repetition_penalty=1.15)[0], skip_special_tokens=True) # response = tokenizer.decode(history[0]).split("<|endoftext|>") #print('decoded_response-->>'+str(response)) response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] # convert to tuples of list #print('response-->>'+str(response)) return response, history interface = gr.Interface( fn=predict, title = "Find your next movie!", inputs="textbox", outputs="text", description=description, examples=[["I liked the movie Matrix because it was very interesting and had a great story. Suggest something similar"]] ) interface.launch()