charulp2499 commited on
Commit
a7954c9
·
verified ·
1 Parent(s): 788eee5

Upload 9 files

Browse files
.gitattributes ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ training_1/cp.ckpt.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
37
+ training_1/state.db filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Generative Playground
3
+ emoji: 🔥
4
+ colorFrom: gray
5
+ colorTo: pink
6
+ sdk: streamlit
7
+ sdk_version: 1.36.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ import numpy as np
4
+ import matplotlib.pyplot as plt
5
+ import pandas as pd
6
+ import seaborn as sns
7
+ import warnings
8
+ warnings.filterwarnings('ignore')
9
+ # %matplotlib inline
10
+
11
+ import tensorflow
12
+ print (tensorflow.__version__)
13
+
14
+ st.header("Welcome to the Generative Playground")
15
+
16
+ from tensorflow.keras.datasets import mnist,cifar10
17
+
18
+ option = st.selectbox(
19
+ "Which model would you like to get prediction with?",
20
+ ("None","Auto-Regressor", "Auto-Encoder", "Diffusion-Model","Other"))
21
+
22
+ st.write("You selected:", option)
23
+
24
+ if option == "None":
25
+ st.write("Please Select the model to get the fun prediction.... :)")
26
+
27
+ if option == "Auto-Encoder":
28
+ st.write("It is under development")
29
+ st.write("Stay tune... Comming soon... :)")
30
+
31
+ if option == "Other":
32
+ st.write("Stay tune... Updating soon... :)")
33
+
34
+ if option == "Diffusion-Model":
35
+ st.write("It is under development")
36
+ st.write("Stay tune... Comming soon... :)")
37
+
38
+ if option == "Auto-Regressor":
39
+ if st.button("Run"):
40
+ st.write("Running Auto-Regressor")
41
+
42
+ st.write("trained on --> cifar-10 dataset, RTX-GPU's, 50-epochs")
43
+ st.write("This is trail model, updated version will be updated consicutively.")
44
+
45
+ (trainX, trainy), (testX, testy) = cifar10.load_data()
46
+
47
+ print('Training data shapes: X=%s, y=%s' % (trainX.shape, trainy.shape))
48
+ print('Testing data shapes: X=%s, y=%s' % (testX.shape, testy.shape))
49
+
50
+
51
+
52
+ for k in range(4):
53
+ fig = plt.figure(figsize=(9,6))
54
+ for j in range(9):
55
+ i = np.random.randint(0, 10000)
56
+ plt.subplot(990 + 1 + j)
57
+ plt.imshow(trainX[i], cmap='gray_r')
58
+ # st.pyplot(fig)
59
+ plt.axis('off')
60
+ #plt.title(trainy[i])
61
+ plt.show()
62
+ st.pyplot(fig)
63
+
64
+
65
+ # asdfaf
66
+
67
+ trainX = np.where(trainX < (0.33 * 256), 0, 1)
68
+ train_data = trainX.astype(np.float32)
69
+
70
+ testX = np.where(testX < (0.33 * 256), 0, 1)
71
+ test_data = testX.astype(np.float32)
72
+
73
+ train_data = np.reshape(train_data, (50000, 32, 32, 3))
74
+ test_data = np.reshape(test_data, (10000, 32, 32, 3))
75
+
76
+ print (train_data.shape, test_data.shape)
77
+
78
+
79
+ import tensorflow
80
+
81
+ class PixelConvLayer(tensorflow.keras.layers.Layer):
82
+ def __init__(self, mask_type, **kwargs):
83
+ super(PixelConvLayer, self).__init__()
84
+ self.mask_type = mask_type
85
+ self.conv = tensorflow.keras.layers.Conv2D(**kwargs)
86
+
87
+ def build(self, input_shape):
88
+ # Build the conv2d layer to initialize kernel variables
89
+ self.conv.build(input_shape)
90
+ # Use the initialized kernel to create the mask
91
+ kernel_shape = self.conv.kernel.get_shape()
92
+ self.mask = np.zeros(shape=kernel_shape)
93
+ self.mask[: kernel_shape[0] // 2, ...] = 1.0
94
+ self.mask[kernel_shape[0] // 2, : kernel_shape[1] // 2, ...] = 1.0
95
+ if self.mask_type == "B":
96
+ self.mask[kernel_shape[0] // 2, kernel_shape[1] // 2, ...] = 1.0
97
+
98
+ def call(self, inputs):
99
+ self.conv.kernel.assign(self.conv.kernel * self.mask)
100
+ return self.conv(inputs)
101
+
102
+
103
+ # Next, we build our residual block layer.
104
+ # This is just a normal residual block, but based on the PixelConvLayer.
105
+ class ResidualBlock(tensorflow.keras.layers.Layer):
106
+ def __init__(self, filters, **kwargs):
107
+ super(ResidualBlock, self).__init__(**kwargs)
108
+ self.conv1 = tensorflow.keras.layers.Conv2D(
109
+ filters=filters, kernel_size=1, activation="relu"
110
+ )
111
+ self.pixel_conv = PixelConvLayer(
112
+ mask_type="B",
113
+ filters=filters // 2,
114
+ kernel_size=3,
115
+ activation="relu",
116
+ padding="same",
117
+ )
118
+ self.conv2 = tensorflow.keras.layers.Conv2D(
119
+ filters=filters, kernel_size=1, activation="relu"
120
+ )
121
+
122
+ def call(self, inputs):
123
+ x = self.conv1(inputs)
124
+ x = self.pixel_conv(x)
125
+ x = self.conv2(x)
126
+ return tensorflow.keras.layers.add([inputs, x])
127
+
128
+ inputs = tensorflow.keras.Input(shape=(32,32,3))
129
+ x = PixelConvLayer(
130
+ mask_type="A", filters=128, kernel_size=7, activation="relu", padding="same"
131
+ )(inputs)
132
+
133
+ for _ in range(5):
134
+ x = ResidualBlock(filters=128)(x)
135
+
136
+ for _ in range(2):
137
+ x = PixelConvLayer(
138
+ mask_type="B",
139
+ filters=128,
140
+ kernel_size=1,
141
+ strides=1,
142
+ activation="relu",
143
+ padding="valid",
144
+ )(x)
145
+
146
+ out = tensorflow.keras.layers.Conv2D(
147
+ filters=3, kernel_size=1, strides=1, activation="sigmoid", padding="valid"
148
+ )(x)
149
+
150
+ pixel_cnn = tensorflow.keras.Model(inputs, out)
151
+ pixel_cnn.summary()
152
+
153
+ adam = tensorflow.keras.optimizers.Adam(learning_rate=0.0005)
154
+ pixel_cnn.compile(optimizer=adam, loss="binary_crossentropy")
155
+
156
+
157
+ # %%
158
+ import os
159
+ checkpoint_path = "training_1/cp.ckpt"
160
+ # checkpoint_path = "training_1/cp.weights.h5"
161
+ checkpoint_dir = os.path.dirname(checkpoint_path)
162
+
163
+
164
+ pixel_cnn.load_weights(checkpoint_path)
165
+
166
+
167
+ # %% [markdown]
168
+ # # Display Results 81 images
169
+
170
+ # %%
171
+ # from IPython.display import Image, display
172
+ from tqdm import tqdm
173
+
174
+
175
+ # Create an empty array of pixels.
176
+ batch = 1
177
+ pixels = np.zeros(shape=(batch,) + (pixel_cnn.input_shape)[1:])
178
+ batch, rows, cols, channels = pixels.shape
179
+
180
+ print(pixels.shape)
181
+
182
+
183
+ import time
184
+
185
+ # progress_text = "Operation in progress. Please wait."
186
+ # my_bar = st.progress(0, progress_text)
187
+ st.caption("Generating..... pls.. wait.. :)")
188
+ my_bar = st.progress(0)
189
+
190
+
191
+ # Iterate over the pixels because generation has to be done sequentially pixel by pixel.
192
+ for row in tqdm(range(rows)):
193
+ for col in range(cols):
194
+ for channel in range(channels):
195
+ time.sleep(0.01)
196
+ # Feed the whole array and retrieving the pixel value probabilities for the next
197
+ # pixel.
198
+ probs = pixel_cnn.predict(pixels)[:, row, col, channel]
199
+ # Use the probabilities to pick pixel values and append the values to the image
200
+ # frame.
201
+ pixels[:, row, col, channel] = tensorflow.math.ceil(
202
+ probs - tensorflow.random.uniform(probs.shape)
203
+ )
204
+ my_bar.progress(int(row*3.125))
205
+ # if row<rows/2:
206
+ # my_bar.progress((rows+1)*2)
207
+ # else:
208
+ # my_bar.progress(row+51)
209
+
210
+ my_bar.progress(100)
211
+ time.sleep(1)
212
+
213
+
214
+ from PIL import Image
215
+ # figout = plt.figure(figsize=(9,6))
216
+ # st.image(Image.fromarray((pixels[-1] * 255).astype(np.uint8), 'RGB').show(),caption="image")
217
+ # Convert the generated pixel array to an image
218
+ generated_image = Image.fromarray((pixels[-1] * 255).astype(np.uint8), 'RGB')
219
+
220
+ # Display the image using Streamlit
221
+ st.image(generated_image, caption="Generated Image")
222
+
223
+ # counter = 0
224
+ # for i in range(4):
225
+ # figout = plt.figure(figsize=(9,6))
226
+ # for j in range(9):
227
+ # plt.subplot(990 + 1 + j)
228
+ # plt.imshow(pixels[counter,:,:,0])#, cmap='gray_r')
229
+ # counter += 1
230
+ # plt.axis('off')
231
+ # plt.show()
232
+ # st.pyplot(figout)
233
+
234
+ # %%
235
+ # else:
236
+ # st.write("Not Available")
237
+
238
+
239
+
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ streamlit == 1.9.2
2
+ numpy == 1.26.3
3
+ matplotlib == 3.8.2
4
+ pandas == 2.1.4
5
+ seaborn == 0.13.2
6
+ tensorflow == 2.9.0
7
+ protobuf == 3.20.3
8
+
9
+
training_1/checkpoint ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model_checkpoint_path: "cp.ckpt"
2
+ all_model_checkpoint_paths: "cp.ckpt"
training_1/cp.ckpt.data-00000-of-00001 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8e94392a9bd55fc21bcdd84bfce8909ac6f8c42ead8349f9b02dab23f5ebf1c
3
+ size 6564857
training_1/cp.ckpt.index ADDED
Binary file (8.74 kB). View file
 
training_1/cp.weights.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a9d0878b5a8409be8f7c5c75520f7afb1c8bc34b4696acf8e5e8a9bb4535365
3
+ size 6653656
training_1/state.db ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:817878e3f8d7d71333f53bfdd3e076ca595dc455f125c9ab55e0c2bbcd9dac67
3
+ size 2211959020