Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
import gradio as gr
|
2 |
import logging
|
3 |
from linkedin_jobs_scraper import LinkedinScraper
|
4 |
-
from linkedin_jobs_scraper.events import Events, EventData
|
5 |
from linkedin_jobs_scraper.query import Query, QueryOptions, QueryFilters
|
6 |
-
from linkedin_jobs_scraper.filters import RelevanceFilters, TimeFilters
|
7 |
import pandas as pd
|
8 |
|
9 |
# Configure logging
|
10 |
-
logging.basicConfig(level=logging.INFO)
|
11 |
|
12 |
# Initialize job data storage
|
13 |
job_data = []
|
@@ -25,7 +25,7 @@ def on_data(data: EventData):
|
|
25 |
})
|
26 |
|
27 |
def on_end():
|
28 |
-
|
29 |
|
30 |
# Scraper function
|
31 |
def scrape_jobs(query, locations, time_filter):
|
@@ -75,20 +75,23 @@ def scrape_jobs(query, locations, time_filter):
|
|
75 |
if job_data:
|
76 |
df = pd.DataFrame(job_data)
|
77 |
message = f"Jobs ({len(job_data)}) data successfully scraped."
|
|
|
78 |
return df, message
|
79 |
else:
|
80 |
-
|
|
|
81 |
|
82 |
except Exception as e:
|
83 |
-
# Handle
|
84 |
-
|
|
|
85 |
return None, message
|
86 |
|
87 |
def gradio_interface(query, locations, time_filter):
|
88 |
df, message = scrape_jobs(query, locations, time_filter)
|
89 |
return df, message
|
90 |
|
91 |
-
#App Layout
|
92 |
iface = gr.Interface(
|
93 |
fn=gradio_interface,
|
94 |
inputs=[
|
@@ -110,4 +113,4 @@ iface = gr.Interface(
|
|
110 |
)
|
111 |
|
112 |
if __name__ == "__main__":
|
113 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import logging
|
3 |
from linkedin_jobs_scraper import LinkedinScraper
|
4 |
+
from linkedin_jobs_scraper.events import Events, EventData, EventMetrics
|
5 |
from linkedin_jobs_scraper.query import Query, QueryOptions, QueryFilters
|
6 |
+
from linkedin_jobs_scraper.filters import RelevanceFilters, TimeFilters, OnSiteOrRemoteFilters
|
7 |
import pandas as pd
|
8 |
|
9 |
# Configure logging
|
10 |
+
logging.basicConfig(filename="job_scraper.log", level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
11 |
|
12 |
# Initialize job data storage
|
13 |
job_data = []
|
|
|
25 |
})
|
26 |
|
27 |
def on_end():
|
28 |
+
logging.info("[ON_END] Scraping completed.")
|
29 |
|
30 |
# Scraper function
|
31 |
def scrape_jobs(query, locations, time_filter):
|
|
|
75 |
if job_data:
|
76 |
df = pd.DataFrame(job_data)
|
77 |
message = f"Jobs ({len(job_data)}) data successfully scraped."
|
78 |
+
logging.info(message)
|
79 |
return df, message
|
80 |
else:
|
81 |
+
logging.warning("No job data found.")
|
82 |
+
return pd.DataFrame(), 'No jobs found.'
|
83 |
|
84 |
except Exception as e:
|
85 |
+
# Handle specific exceptions and log detailed information
|
86 |
+
logging.error(f"An error occurred during scraping: {e}", exc_info=True)
|
87 |
+
message = f"An error occurred during scraping: {e}. Please check the logs for more details."
|
88 |
return None, message
|
89 |
|
90 |
def gradio_interface(query, locations, time_filter):
|
91 |
df, message = scrape_jobs(query, locations, time_filter)
|
92 |
return df, message
|
93 |
|
94 |
+
# App Layout
|
95 |
iface = gr.Interface(
|
96 |
fn=gradio_interface,
|
97 |
inputs=[
|
|
|
113 |
)
|
114 |
|
115 |
if __name__ == "__main__":
|
116 |
+
iface.launch()
|