Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,8 @@
|
|
1 |
-
import gradio as gr
|
2 |
import logging
|
3 |
from linkedin_jobs_scraper import LinkedinScraper
|
4 |
-
from linkedin_jobs_scraper.events import Events, EventData
|
5 |
from linkedin_jobs_scraper.query import Query, QueryOptions, QueryFilters
|
6 |
-
from linkedin_jobs_scraper.filters import
|
7 |
import pandas as pd
|
8 |
|
9 |
# Configure logging
|
@@ -19,38 +18,30 @@ def on_data(data: EventData):
|
|
19 |
'Title': data.title,
|
20 |
'Company': data.company,
|
21 |
'Location': data.location,
|
22 |
-
# 'Company Link': data.company_link,
|
23 |
'Job Link': data.link,
|
24 |
-
# 'Insights': data.insights,
|
25 |
'Description Length': len(data.description),
|
26 |
})
|
27 |
|
28 |
def on_end():
|
29 |
print("[ON_END] Scraping completed.")
|
30 |
|
31 |
-
# LinkedIn Scraper function
|
32 |
-
def scrape_jobs(query, locations
|
33 |
global job_data
|
34 |
try:
|
35 |
job_data = []
|
36 |
-
|
37 |
-
if time_filter == "From Past Month":
|
38 |
-
time_filter = TimeFilters.MONTH
|
39 |
-
elif time_filter == "From Last 24 Hours":
|
40 |
-
time_filter = TimeFilters.DAY
|
41 |
-
else:
|
42 |
-
time_filter = TimeFilters.MONTH
|
43 |
-
|
44 |
scraper = LinkedinScraper(
|
45 |
chrome_executable_path=None,
|
46 |
chrome_binary_location=None,
|
47 |
chrome_options=None,
|
48 |
headless=True,
|
49 |
-
max_workers=
|
50 |
slow_mo=0.8,
|
51 |
page_load_timeout=60,
|
52 |
)
|
53 |
-
|
|
|
54 |
scraper.on(Events.DATA, on_data)
|
55 |
scraper.on(Events.END, on_end)
|
56 |
|
@@ -60,13 +51,11 @@ def scrape_jobs(query, locations, time_filter):
|
|
60 |
options=QueryOptions(
|
61 |
locations=locations.split(','),
|
62 |
apply_link=True,
|
63 |
-
skip_promoted_jobs=
|
64 |
page_offset=0,
|
65 |
limit=100,
|
66 |
filters=QueryFilters(
|
67 |
-
|
68 |
-
time=time_filter,
|
69 |
-
# on_site_or_remote=OnSiteOrRemoteFilters.REMOTE,
|
70 |
),
|
71 |
),
|
72 |
),
|
@@ -75,77 +64,36 @@ def scrape_jobs(query, locations, time_filter):
|
|
75 |
scraper.run(queries)
|
76 |
|
77 |
# Convert to DataFrame and return
|
78 |
-
# Save the job data to a CSV file after scraping ends
|
79 |
-
# if job_data:
|
80 |
-
# # Save the job data to a CSV file
|
81 |
-
# file_name = "jobs_data.csv"
|
82 |
-
# df = pd.DataFrame(job_data)
|
83 |
-
# df.to_csv(file_name, index=False)
|
84 |
-
# message = f"Jobs data saved to {file_name}"
|
85 |
-
# return file_name, message # Return the CSV file path and success message
|
86 |
-
# else:
|
87 |
-
# message = "No job data found for the given query and locations."
|
88 |
-
# return None, message
|
89 |
if job_data:
|
90 |
-
df = pd.DataFrame(job_data)
|
91 |
-
|
92 |
-
return df, message # Return DataFrame and message
|
93 |
else:
|
94 |
-
return pd.DataFrame(),
|
95 |
-
|
96 |
except Exception as e:
|
97 |
# Handle errors gracefully
|
98 |
-
message = f"
|
99 |
return None, message
|
100 |
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
#
|
103 |
-
# def gradio_interface(query, locations):
|
104 |
-
# csv_data, message = scrape_jobs(query, locations)
|
105 |
-
# if csv_data:
|
106 |
-
# return csv_data, message
|
107 |
-
# else:
|
108 |
-
# return None, "No results to display."
|
109 |
-
|
110 |
-
def gradio_interface(query, locations, time_filter):
|
111 |
-
df, message = scrape_jobs(query, locations, time_filter)
|
112 |
-
return df, message
|
113 |
-
|
114 |
-
# # Gradio app layout
|
115 |
-
# iface = gr.Interface(
|
116 |
-
# fn=gradio_interface,
|
117 |
-
# inputs=[
|
118 |
-
# gr.Textbox(label="Job Query", placeholder="e.g., Data Scientist", value="Unity developers"),
|
119 |
-
# gr.Textbox(label="Locations (comma-separated)", placeholder="e.g., United States, India", value="United States, India"),
|
120 |
-
# ],
|
121 |
-
# outputs=[
|
122 |
-
# gr.File(label="Download CSV"),
|
123 |
-
# gr.Textbox(label="Message"),
|
124 |
-
# ],
|
125 |
-
# title="LinkedIn Job Scraper",
|
126 |
-
# description="Enter the job query and locations to scrape LinkedIn job postings. Outputs a downloadable CSV file.",
|
127 |
-
# )
|
128 |
-
|
129 |
iface = gr.Interface(
|
130 |
fn=gradio_interface,
|
131 |
inputs=[
|
132 |
gr.Textbox(label="Job Query", placeholder="e.g., Data Scientist", value="Unity developers"),
|
133 |
-
gr.Textbox(label="Locations (comma-separated)", placeholder="e.g., United States
|
134 |
-
gr.Dropdown(
|
135 |
-
label="Time Filter",
|
136 |
-
choices=["From Past Month", "From Last 24 Hours"], # The options the user can select
|
137 |
-
value="From Past Month", # Default option
|
138 |
-
type="value",
|
139 |
-
),
|
140 |
],
|
141 |
outputs=[
|
142 |
-
gr.Dataframe(label="Job Results", headers=[
|
143 |
gr.Textbox(label="Message"),
|
144 |
],
|
145 |
-
title="Job Scraper",
|
146 |
-
description="
|
147 |
)
|
148 |
|
149 |
# Launch app
|
150 |
if __name__ == "__main__":
|
151 |
-
iface.launch()
|
|
|
|
|
1 |
import logging
|
2 |
from linkedin_jobs_scraper import LinkedinScraper
|
3 |
+
from linkedin_jobs_scraper.events import Events, EventData
|
4 |
from linkedin_jobs_scraper.query import Query, QueryOptions, QueryFilters
|
5 |
+
from linkedin_jobs_scraper.filters import TimeFilters
|
6 |
import pandas as pd
|
7 |
|
8 |
# Configure logging
|
|
|
18 |
'Title': data.title,
|
19 |
'Company': data.company,
|
20 |
'Location': data.location,
|
|
|
21 |
'Job Link': data.link,
|
|
|
22 |
'Description Length': len(data.description),
|
23 |
})
|
24 |
|
25 |
def on_end():
|
26 |
print("[ON_END] Scraping completed.")
|
27 |
|
28 |
+
# LinkedIn Scraper function with error handling
|
29 |
+
def scrape_jobs(query, locations):
|
30 |
global job_data
|
31 |
try:
|
32 |
job_data = []
|
33 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
scraper = LinkedinScraper(
|
35 |
chrome_executable_path=None,
|
36 |
chrome_binary_location=None,
|
37 |
chrome_options=None,
|
38 |
headless=True,
|
39 |
+
max_workers=5,
|
40 |
slow_mo=0.8,
|
41 |
page_load_timeout=60,
|
42 |
)
|
43 |
+
|
44 |
+
# Catching the exception for missing chrome and notify the user
|
45 |
scraper.on(Events.DATA, on_data)
|
46 |
scraper.on(Events.END, on_end)
|
47 |
|
|
|
51 |
options=QueryOptions(
|
52 |
locations=locations.split(','),
|
53 |
apply_link=True,
|
54 |
+
skip_promoted_jobs=True,
|
55 |
page_offset=0,
|
56 |
limit=100,
|
57 |
filters=QueryFilters(
|
58 |
+
time=TimeFilters.DAY, # Specify desired time filter
|
|
|
|
|
59 |
),
|
60 |
),
|
61 |
),
|
|
|
64 |
scraper.run(queries)
|
65 |
|
66 |
# Convert to DataFrame and return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
if job_data:
|
68 |
+
df = pd.DataFrame(job_data)
|
69 |
+
return df, "Scraping successful"
|
|
|
70 |
else:
|
71 |
+
return pd.DataFrame(), "No jobs found"
|
|
|
72 |
except Exception as e:
|
73 |
# Handle errors gracefully
|
74 |
+
message = f"Error occurred: {str(e)}"
|
75 |
return None, message
|
76 |
|
77 |
+
# Gradio interface
|
78 |
+
def gradio_interface(query, locations):
|
79 |
+
df, message = scrape_jobs(query, locations)
|
80 |
+
return df, message
|
81 |
|
82 |
+
# Gradio app layout
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
iface = gr.Interface(
|
84 |
fn=gradio_interface,
|
85 |
inputs=[
|
86 |
gr.Textbox(label="Job Query", placeholder="e.g., Data Scientist", value="Unity developers"),
|
87 |
+
gr.Textbox(label="Locations (comma-separated)", placeholder="e.g., United States", value="United States"),
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
],
|
89 |
outputs=[
|
90 |
+
gr.Dataframe(label="Job Results", headers=["Date", "Title", "Company", "Location", "Job Link"], interactive=True),
|
91 |
gr.Textbox(label="Message"),
|
92 |
],
|
93 |
+
title="LinkedIn Job Scraper",
|
94 |
+
description="Scrape LinkedIn for jobs based on query and locations.",
|
95 |
)
|
96 |
|
97 |
# Launch app
|
98 |
if __name__ == "__main__":
|
99 |
+
iface.launch()
|