Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,151 +1,151 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import logging
|
3 |
-
from linkedin_jobs_scraper import LinkedinScraper
|
4 |
-
from linkedin_jobs_scraper.events import Events, EventData, EventMetrics
|
5 |
-
from linkedin_jobs_scraper.query import Query, QueryOptions, QueryFilters
|
6 |
-
from linkedin_jobs_scraper.filters import RelevanceFilters, TimeFilters, OnSiteOrRemoteFilters
|
7 |
-
import pandas as pd
|
8 |
-
|
9 |
-
# Configure logging
|
10 |
-
logging.basicConfig(level=logging.INFO)
|
11 |
-
|
12 |
-
# Initialize job data storage
|
13 |
-
job_data = []
|
14 |
-
|
15 |
-
# Event Handlers
|
16 |
-
def on_data(data: EventData):
|
17 |
-
job_data.append({
|
18 |
-
'Date Posted': data.date,
|
19 |
-
'Title': data.title,
|
20 |
-
'Company': data.company,
|
21 |
-
'Location': data.location,
|
22 |
-
# 'Company Link': data.company_link,
|
23 |
-
'Job Link': data.link,
|
24 |
-
# 'Insights': data.insights,
|
25 |
-
'Description Length': len(data.description),
|
26 |
-
})
|
27 |
-
|
28 |
-
def on_end():
|
29 |
-
print("[ON_END] Scraping completed.")
|
30 |
-
|
31 |
-
# LinkedIn Scraper function
|
32 |
-
def scrape_jobs(query, locations, time_filter):
|
33 |
-
global job_data
|
34 |
-
try:
|
35 |
-
job_data = []
|
36 |
-
|
37 |
-
if time_filter == "From Past Month":
|
38 |
-
time_filter = TimeFilters.MONTH
|
39 |
-
elif time_filter == "From Last 24 Hours":
|
40 |
-
time_filter = TimeFilters.DAY
|
41 |
-
else:
|
42 |
-
time_filter = TimeFilters.MONTH
|
43 |
-
|
44 |
-
scraper = LinkedinScraper(
|
45 |
-
chrome_executable_path=None,
|
46 |
-
chrome_binary_location=None,
|
47 |
-
chrome_options=None,
|
48 |
-
headless=True,
|
49 |
-
max_workers=10,
|
50 |
-
slow_mo=0.8,
|
51 |
-
page_load_timeout=60,
|
52 |
-
)
|
53 |
-
|
54 |
-
scraper.on(Events.DATA, on_data)
|
55 |
-
scraper.on(Events.END, on_end)
|
56 |
-
|
57 |
-
queries = [
|
58 |
-
Query(
|
59 |
-
query=query,
|
60 |
-
options=QueryOptions(
|
61 |
-
locations=locations.split(','),
|
62 |
-
apply_link=True,
|
63 |
-
skip_promoted_jobs=False,
|
64 |
-
page_offset=0,
|
65 |
-
limit=100,
|
66 |
-
filters=QueryFilters(
|
67 |
-
# relevance=RelevanceFilters.RECENT,
|
68 |
-
time=time_filter,
|
69 |
-
# on_site_or_remote=OnSiteOrRemoteFilters.REMOTE,
|
70 |
-
),
|
71 |
-
),
|
72 |
-
),
|
73 |
-
]
|
74 |
-
|
75 |
-
scraper.run(queries)
|
76 |
-
|
77 |
-
# Convert to DataFrame and return
|
78 |
-
# Save the job data to a CSV file after scraping ends
|
79 |
-
# if job_data:
|
80 |
-
# # Save the job data to a CSV file
|
81 |
-
# file_name = "jobs_data.csv"
|
82 |
-
# df = pd.DataFrame(job_data)
|
83 |
-
# df.to_csv(file_name, index=False)
|
84 |
-
# message = f"Jobs data saved to {file_name}"
|
85 |
-
# return file_name, message # Return the CSV file path and success message
|
86 |
-
# else:
|
87 |
-
# message = "No job data found for the given query and locations."
|
88 |
-
# return None, message
|
89 |
-
if job_data:
|
90 |
-
df = pd.DataFrame(job_data)
|
91 |
-
message = f"Jobs ({len(job_data)}) data successfully scraped."
|
92 |
-
return df, message # Return DataFrame and message
|
93 |
-
else:
|
94 |
-
return pd.DataFrame(),
|
95 |
-
|
96 |
-
except Exception as e:
|
97 |
-
# Handle errors gracefully
|
98 |
-
message = f"An error occurred during scraping: {e}"
|
99 |
-
return None, message
|
100 |
-
|
101 |
-
|
102 |
-
# Define Gradio interface
|
103 |
-
# def gradio_interface(query, locations):
|
104 |
-
# csv_data, message = scrape_jobs(query, locations)
|
105 |
-
# if csv_data:
|
106 |
-
# return csv_data, message
|
107 |
-
# else:
|
108 |
-
# return None, "No results to display."
|
109 |
-
|
110 |
-
def gradio_interface(query, locations, time_filter):
|
111 |
-
df, message = scrape_jobs(query, locations, time_filter)
|
112 |
-
return df, message
|
113 |
-
|
114 |
-
# # Gradio app layout
|
115 |
-
# iface = gr.Interface(
|
116 |
-
# fn=gradio_interface,
|
117 |
-
# inputs=[
|
118 |
-
# gr.Textbox(label="Job Query", placeholder="e.g., Data Scientist", value="Unity developers"),
|
119 |
-
# gr.Textbox(label="Locations (comma-separated)", placeholder="e.g., United States, India", value="United States, India"),
|
120 |
-
# ],
|
121 |
-
# outputs=[
|
122 |
-
# gr.File(label="Download CSV"),
|
123 |
-
# gr.Textbox(label="Message"),
|
124 |
-
# ],
|
125 |
-
# title="LinkedIn Job Scraper",
|
126 |
-
# description="Enter the job query and locations to scrape LinkedIn job postings. Outputs a downloadable CSV file.",
|
127 |
-
# )
|
128 |
-
|
129 |
-
iface = gr.Interface(
|
130 |
-
fn=gradio_interface,
|
131 |
-
inputs=[
|
132 |
-
gr.Textbox(label="Job Query", placeholder="e.g., Data Scientist", value="Unity developers"),
|
133 |
-
gr.Textbox(label="Locations (comma-separated)", placeholder="e.g., United States, India", value="United States, United Kingdom, Canada, Germany, India"),
|
134 |
-
gr.Dropdown(
|
135 |
-
label="Time Filter",
|
136 |
-
choices=["From Past Month", "From Last 24 Hours"], # The options the user can select
|
137 |
-
value="From Past Month", # Default option
|
138 |
-
type="value",
|
139 |
-
),
|
140 |
-
],
|
141 |
-
outputs=[
|
142 |
-
gr.Dataframe(label="Job Results", headers=['Date','Company', 'ApplyLink'], interactive=True),
|
143 |
-
gr.Textbox(label="Message"),
|
144 |
-
],
|
145 |
-
title="Job Scraper",
|
146 |
-
description="Enter a job query and locations to scrape job postings and display the results in a table.",
|
147 |
-
)
|
148 |
-
|
149 |
-
# Launch app
|
150 |
-
if __name__ == "__main__":
|
151 |
iface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import logging
|
3 |
+
from linkedin_jobs_scraper import LinkedinScraper
|
4 |
+
from linkedin_jobs_scraper.events import Events, EventData, EventMetrics
|
5 |
+
from linkedin_jobs_scraper.query import Query, QueryOptions, QueryFilters
|
6 |
+
from linkedin_jobs_scraper.filters import RelevanceFilters, TimeFilters, OnSiteOrRemoteFilters
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
# Configure logging
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
|
12 |
+
# Initialize job data storage
|
13 |
+
job_data = []
|
14 |
+
|
15 |
+
# Event Handlers
|
16 |
+
def on_data(data: EventData):
|
17 |
+
job_data.append({
|
18 |
+
'Date Posted': data.date,
|
19 |
+
'Title': data.title,
|
20 |
+
'Company': data.company,
|
21 |
+
'Location': data.location,
|
22 |
+
# 'Company Link': data.company_link,
|
23 |
+
'Job Link': data.link,
|
24 |
+
# 'Insights': data.insights,
|
25 |
+
'Description Length': len(data.description),
|
26 |
+
})
|
27 |
+
|
28 |
+
def on_end():
|
29 |
+
print("[ON_END] Scraping completed.")
|
30 |
+
|
31 |
+
# LinkedIn Scraper function
|
32 |
+
def scrape_jobs(query, locations, time_filter):
|
33 |
+
global job_data
|
34 |
+
try:
|
35 |
+
job_data = []
|
36 |
+
|
37 |
+
if time_filter == "From Past Month":
|
38 |
+
time_filter = TimeFilters.MONTH
|
39 |
+
elif time_filter == "From Last 24 Hours":
|
40 |
+
time_filter = TimeFilters.DAY
|
41 |
+
else:
|
42 |
+
time_filter = TimeFilters.MONTH
|
43 |
+
|
44 |
+
scraper = LinkedinScraper(
|
45 |
+
chrome_executable_path=None,
|
46 |
+
chrome_binary_location=None,
|
47 |
+
chrome_options=None,
|
48 |
+
headless=True,
|
49 |
+
max_workers=10,
|
50 |
+
slow_mo=0.8,
|
51 |
+
page_load_timeout=60,
|
52 |
+
)
|
53 |
+
|
54 |
+
scraper.on(Events.DATA, on_data)
|
55 |
+
scraper.on(Events.END, on_end)
|
56 |
+
|
57 |
+
queries = [
|
58 |
+
Query(
|
59 |
+
query=query,
|
60 |
+
options=QueryOptions(
|
61 |
+
locations=locations.split(','),
|
62 |
+
apply_link=True,
|
63 |
+
skip_promoted_jobs=False,
|
64 |
+
page_offset=0,
|
65 |
+
limit=100,
|
66 |
+
filters=QueryFilters(
|
67 |
+
# relevance=RelevanceFilters.RECENT,
|
68 |
+
time=time_filter,
|
69 |
+
# on_site_or_remote=OnSiteOrRemoteFilters.REMOTE,
|
70 |
+
),
|
71 |
+
),
|
72 |
+
),
|
73 |
+
]
|
74 |
+
|
75 |
+
scraper.run(queries)
|
76 |
+
|
77 |
+
# Convert to DataFrame and return
|
78 |
+
# Save the job data to a CSV file after scraping ends
|
79 |
+
# if job_data:
|
80 |
+
# # Save the job data to a CSV file
|
81 |
+
# file_name = "jobs_data.csv"
|
82 |
+
# df = pd.DataFrame(job_data)
|
83 |
+
# df.to_csv(file_name, index=False)
|
84 |
+
# message = f"Jobs data saved to {file_name}"
|
85 |
+
# return file_name, message # Return the CSV file path and success message
|
86 |
+
# else:
|
87 |
+
# message = "No job data found for the given query and locations."
|
88 |
+
# return None, message
|
89 |
+
if job_data:
|
90 |
+
df = pd.DataFrame(job_data)
|
91 |
+
message = f"Jobs ({len(job_data)}) data successfully scraped."
|
92 |
+
return df, message # Return DataFrame and message
|
93 |
+
else:
|
94 |
+
return pd.DataFrame(),
|
95 |
+
|
96 |
+
except Exception as e:
|
97 |
+
# Handle errors gracefully
|
98 |
+
message = f"An error occurred during scraping: {e}"
|
99 |
+
return None, message
|
100 |
+
|
101 |
+
|
102 |
+
# Define Gradio interface
|
103 |
+
# def gradio_interface(query, locations):
|
104 |
+
# csv_data, message = scrape_jobs(query, locations)
|
105 |
+
# if csv_data:
|
106 |
+
# return csv_data, message
|
107 |
+
# else:
|
108 |
+
# return None, "No results to display."
|
109 |
+
|
110 |
+
def gradio_interface(query, locations, time_filter):
|
111 |
+
df, message, _ = scrape_jobs(query, locations, time_filter)
|
112 |
+
return df, message
|
113 |
+
|
114 |
+
# # Gradio app layout
|
115 |
+
# iface = gr.Interface(
|
116 |
+
# fn=gradio_interface,
|
117 |
+
# inputs=[
|
118 |
+
# gr.Textbox(label="Job Query", placeholder="e.g., Data Scientist", value="Unity developers"),
|
119 |
+
# gr.Textbox(label="Locations (comma-separated)", placeholder="e.g., United States, India", value="United States, India"),
|
120 |
+
# ],
|
121 |
+
# outputs=[
|
122 |
+
# gr.File(label="Download CSV"),
|
123 |
+
# gr.Textbox(label="Message"),
|
124 |
+
# ],
|
125 |
+
# title="LinkedIn Job Scraper",
|
126 |
+
# description="Enter the job query and locations to scrape LinkedIn job postings. Outputs a downloadable CSV file.",
|
127 |
+
# )
|
128 |
+
|
129 |
+
iface = gr.Interface(
|
130 |
+
fn=gradio_interface,
|
131 |
+
inputs=[
|
132 |
+
gr.Textbox(label="Job Query", placeholder="e.g., Data Scientist", value="Unity developers"),
|
133 |
+
gr.Textbox(label="Locations (comma-separated)", placeholder="e.g., United States, India", value="United States, United Kingdom, Canada, Germany, India"),
|
134 |
+
gr.Dropdown(
|
135 |
+
label="Time Filter",
|
136 |
+
choices=["From Past Month", "From Last 24 Hours"], # The options the user can select
|
137 |
+
value="From Past Month", # Default option
|
138 |
+
type="value",
|
139 |
+
),
|
140 |
+
],
|
141 |
+
outputs=[
|
142 |
+
gr.Dataframe(label="Job Results", headers=['Date','Company', 'ApplyLink'], interactive=True),
|
143 |
+
gr.Textbox(label="Message"),
|
144 |
+
],
|
145 |
+
title="Job Scraper",
|
146 |
+
description="Enter a job query and locations to scrape job postings and display the results in a table.",
|
147 |
+
)
|
148 |
+
|
149 |
+
# Launch app
|
150 |
+
if __name__ == "__main__":
|
151 |
iface.launch()
|