Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from haystack.nodes import DensePassageRetriever
|
2 |
+
from haystack.document_stores import FAISSDocumentStore
|
3 |
+
from haystack.pipelines import ExtractiveQAPipeline
|
4 |
+
from transformers import pipeline
|
5 |
+
import gradio as gr
|
6 |
+
from haystack.utils import convert_files_to_docs
|
7 |
+
|
8 |
+
# Step 1: Set up Document Store
|
9 |
+
# Create a FAISS document store for efficient retrieval
|
10 |
+
document_store = FAISSDocumentStore(embedding_dim=768, faiss_index_factory_str="Flat")
|
11 |
+
|
12 |
+
# Step 2: Upload and Process PDF Documents
|
13 |
+
def upload_and_process_pdf(file):
|
14 |
+
# Convert PDF file to documents
|
15 |
+
docs = convert_files_to_docs(dir_path=".", file_paths=[file.name])
|
16 |
+
document_store.write_documents(docs)
|
17 |
+
document_store.update_embeddings(retriever)
|
18 |
+
return "Document uploaded and processed successfully."
|
19 |
+
|
20 |
+
# Step 3: Set up Retriever
|
21 |
+
retriever = DensePassageRetriever(
|
22 |
+
document_store=document_store,
|
23 |
+
query_embedding_model="facebook/dpr-question_encoder-single-nq-base",
|
24 |
+
passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",
|
25 |
+
)
|
26 |
+
|
27 |
+
# Step 4: Set up Generator (using FLAN-T5)
|
28 |
+
generator = pipeline("text2text-generation", model="google/flan-t5-base")
|
29 |
+
|
30 |
+
# Step 5: Build the Retrieval-Augmented Generation Function
|
31 |
+
def rag_system(query):
|
32 |
+
# Retrieve relevant documents
|
33 |
+
retrieved_docs = retriever.retrieve(query, top_k=2)
|
34 |
+
context = " ".join([doc.content for doc in retrieved_docs])
|
35 |
+
|
36 |
+
# Generate answer using the context
|
37 |
+
input_text = f"Question: {query}\nContext: {context}"
|
38 |
+
answer = generator(input_text, max_length=100, do_sample=True)[0]['generated_text']
|
39 |
+
|
40 |
+
# Return results
|
41 |
+
return {
|
42 |
+
"Question": query,
|
43 |
+
"Answer": answer,
|
44 |
+
"Context": context
|
45 |
+
}
|
46 |
+
|
47 |
+
# Step 6: Create Gradio Interface
|
48 |
+
def query_rag(question):
|
49 |
+
result = rag_system(question)
|
50 |
+
return result["Answer"], result["Context"]
|
51 |
+
|
52 |
+
def upload_document(file):
|
53 |
+
message = upload_and_process_pdf(file)
|
54 |
+
return message
|
55 |
+
|
56 |
+
interface = gr.Blocks()
|
57 |
+
|
58 |
+
with interface:
|
59 |
+
gr.Markdown("# RAG System with PDF Upload")
|
60 |
+
with gr.Tab("Ask a Question"):
|
61 |
+
question = gr.Textbox(label="Enter your question")
|
62 |
+
answer = gr.Textbox(label="Generated Answer")
|
63 |
+
context = gr.Textbox(label="Context")
|
64 |
+
query_button = gr.Button("Get Answer")
|
65 |
+
query_button.click(query_rag, inputs=question, outputs=[answer, context])
|
66 |
+
with gr.Tab("Upload Document"):
|
67 |
+
file_upload = gr.File(label="Upload PDF", file_types=[".pdf"])
|
68 |
+
upload_button = gr.Button("Upload and Process")
|
69 |
+
upload_output = gr.Textbox(label="Upload Status")
|
70 |
+
upload_button.click(upload_document, inputs=file_upload, outputs=upload_output)
|
71 |
+
|
72 |
+
# Step 7: Launch the Interface
|
73 |
+
if __name__ == "__main__":
|
74 |
+
interface.launch()
|