File size: 2,187 Bytes
2e808c4
29c3aa6
 
 
 
 
 
 
 
 
 
 
 
 
8195b87
29c3aa6
 
 
62ed4f6
29c3aa6
 
 
 
 
 
 
 
 
 
 
 
 
8195b87
19b4114
 
29c3aa6
 
8195b87
50e2273
2e808c4
3bb778c
 
 
 
5838536
fc4a409
5838536
 
 
fc4a409
19b4114
 
 
8195b87
 
fc4a409
5838536
8195b87
 
 
19b4114
5838536
 
 
 
 
 
f9019ad
014f597
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch

base_model_name = "chaseharmon/Rap-Mistral-Big"

@st.cache_resource
def load_model():
    nf4_config = BitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_use_double_quant=False,
        bnb_4bit_compute_dtype="float16"
    )

    model = AutoModelForCausalLM.from_pretrained(
        base_model_name,
        device_map='auto',
        quantization_config=nf4_config,
    )
    model.config.use_cache = False
    model.config.pretraining_tp = 1

    return model

@st.cache_resource
def load_tokenizer(): 
    tokenizer = AutoTokenizer.from_pretrained(base_model_name)
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.padding_side = "right"
    return tokenizer

def build_prompt(question):
    prompt = f"[INST] {question} [/INST] "
    return prompt

model = load_model()
model.eval()
tokenizer = load_tokenizer()

st.title("Rap Verse Generation V1 Demo")
st.header("Supported Artists")
st.write("Lupe Fiasco, Common, Jay-Z, Yasiin Bey, Ab-Soul, Rakim")

prompt_placeholder = st.empty()
display_placeholder = st.empty()

prompt_placeholder.write("Ask Rap-Mistral Something")
display_placeholder.write("")

# Temperature slider
temperature = st.slider('Temperature', min_value=0.0, max_value=1.0, value=0.5, step=0.01)

question = st.chat_input("Write a verse in the style of Lupe Fiasco")
if question:
    display_placeholder.write("Loading...")
    prompt_placeholder.write(question)
    prompt = build_prompt(question)
    inputs = tokenizer(prompt, return_tensors="pt")
    model_inputs = inputs.to('cuda')
    generated_ids = model.generate(**model_inputs, max_new_tokens=300, do_sample=True, pad_token_id=tokenizer.eos_token_id, temperature=temperature)
    response = tokenizer.batch_decode(generated_ids)[0]
    end_of_inst = response.find("[/INST]") + len("[/INST]")
    if end_of_inst > -1:
        actual_response = response[end_of_inst:].strip()
    else:
        actual_response = response
    actual_response = actual_response.replace("\n", "  \n")
    display_placeholder.write(actual_response)