File size: 1,694 Bytes
2e808c4 29c3aa6 8195b87 29c3aa6 62ed4f6 29c3aa6 8195b87 29c3aa6 8195b87 50e2273 2e808c4 3bb778c fc4a409 8195b87 fc4a409 8195b87 fc4a409 ac75dba 29c3aa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
base_model_name = "chaseharmon/Rap-Mistral-Big"
@st.cache_resource
def load_model():
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=False,
bnb_4bit_compute_dtype="float16"
)
model = AutoModelForCausalLM.from_pretrained(
base_model_name,
device_map='auto',
quantization_config=nf4_config,
)
model.config.use_cache = False
model.config.pretraining_tp = 1
return model
@st.cache_resource
def load_tokenizer():
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
return tokenizer
def build_prompt(question):
prompt=f"[INST] {question} [/INST] "
return prompt
model = load_model()
model.eval()
tokenizer = load_tokenizer()
st.title("Rap Verse Generation V1 Demo")
st.header("Supported Artists")
st.write("Lupe Fiasco, Common, Jay-Z, Yasiin Bey, Ab-Soul, Rakim")
display_placeholder = st.empty()
display_placeholder.write("Ask Rap-Mistral Something")
question = st.chat_input("Write a verse in the style of Lupe Fiasco")
if question:
display_placeholder.write("Loading...")
prompt = build_prompt(question)
inputs = tokenizer(prompt, return_tensors="pt")
model_inputs = inputs.to('cuda')
generated_ids = model.generate(**model_inputs, max_new_tokens=300, do_sample=True, pad_token_id=tokenizer.eos_token_id)
response = tokenizer.batch_decode(generated_ids)
display_placeholder.write(response[0])
|