chaseharmon's picture
new stuff
8195b87
raw
history blame
1.48 kB
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
base_model_name = "chaseharmon/Rap-Mistral-Big"
@st.cache_resource
def load_model():
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=False,
bnb_4bit_compute_dtype="float16"
)
model = AutoModelForCausalLM.from_pretrained(
base_model_name,
device_map='auto',
)
model.config.use_cache = False
model.config.pretraining_tp = 1
return model
@st.cache_resource
def load_tokenizer():
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
return tokenizer
def build_prompt(question):
prompt=f"[INST] {question} [/INST] "
return prompt
model = load_model()
model.eval()
tokenizer = load_tokenizer
st.title("Rap Verse Generation V1 Demo")
st.header("Supported Artists")
st.write("Lupe Fiasco, Common, Jay-Z, Yasiin Bey, Ab-Soul, Rakim")
question = st.chat_input("Write a verse in the style of Lupe Fiasco")
if question:
prompt = build_prompt(question)
inputs = tokenizer(prompt, return_tensors="pt")
model_inputs = inputs.to('cuda')
generated_ids = model.generate(**model_inputs, max_new_tokens=300, do_sample=True, pad_token_id=tokenizer.eos_token_id)
decoded_output = tokenizer.batch_decode(generated_ids)