chats-bug commited on
Commit
0d54c12
·
1 Parent(s): 046f505

Fixed git large coco model

Browse files
Files changed (1) hide show
  1. app.py +2 -13
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import gradio as gr
2
  from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel, BitsAndBytesConfig
3
  import torch
@@ -38,7 +39,6 @@ def generate_caption(
38
  model,
39
  image,
40
  tokenizer=None,
41
- use_float_16=False,
42
  ):
43
  """
44
  Generate captions for the given image.
@@ -61,15 +61,10 @@ def generate_caption(
61
  str
62
  The generated caption.
63
  """
64
- inputs = preprocessor(image, return_tensors="pt").to(device)
65
- pixel_values = preprocessor(images=image, return_tensors="pt").pixel_values
66
-
67
- if use_float_16:
68
- inputs = inputs.to(torch.float16)
69
 
70
  generated_ids = model.generate(
71
  pixel_values=pixel_values,
72
- attention_mask=inputs.attention_mask,
73
  max_length=50,
74
  )
75
 
@@ -117,7 +112,6 @@ def generate_captions(
117
  image,
118
  max_length,
119
  temperature,
120
- use_sample_image,
121
  ):
122
  """
123
  Generate captions for the given image.
@@ -137,10 +131,6 @@ def generate_captions(
137
  caption_git_large_coco = ""
138
  caption_oc_coca = ""
139
 
140
- if use_sample_image:
141
- url = "http://images.cocodataset.org/val2017/000000039769.jpg"
142
- image = Image.open(requests.get(url, stream=True).raw)
143
-
144
  # Generate captions for the image using the Blip base model
145
  try:
146
  caption_blip_base = generate_caption(preprocessor_blip_base, model_blip_base, image).strip()
@@ -176,7 +166,6 @@ iface = gr.Interface(
176
  gr.inputs.Image(type="pil", label="Image"),
177
  gr.inputs.Slider(minimum=16, maximum=64, step=2, default=32, label="Max Length"),
178
  gr.inputs.Slider(minimum=0.5, maximum=1.5, step=0.1, default=1.0, label="Temperature"),
179
- gr.inputs.Checkbox(default=False, label="Use example image")
180
  ],
181
  # Define the outputs
182
  outputs=[
 
1
+ import traceback
2
  import gradio as gr
3
  from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel, BitsAndBytesConfig
4
  import torch
 
39
  model,
40
  image,
41
  tokenizer=None,
 
42
  ):
43
  """
44
  Generate captions for the given image.
 
61
  str
62
  The generated caption.
63
  """
64
+ pixel_values = preprocessor(images=image, return_tensors="pt").pixel_values.to(device)
 
 
 
 
65
 
66
  generated_ids = model.generate(
67
  pixel_values=pixel_values,
 
68
  max_length=50,
69
  )
70
 
 
112
  image,
113
  max_length,
114
  temperature,
 
115
  ):
116
  """
117
  Generate captions for the given image.
 
131
  caption_git_large_coco = ""
132
  caption_oc_coca = ""
133
 
 
 
 
 
134
  # Generate captions for the image using the Blip base model
135
  try:
136
  caption_blip_base = generate_caption(preprocessor_blip_base, model_blip_base, image).strip()
 
166
  gr.inputs.Image(type="pil", label="Image"),
167
  gr.inputs.Slider(minimum=16, maximum=64, step=2, default=32, label="Max Length"),
168
  gr.inputs.Slider(minimum=0.5, maximum=1.5, step=0.1, default=1.0, label="Temperature"),
 
169
  ],
170
  # Define the outputs
171
  outputs=[