chats-bug commited on
Commit
7295a68
·
1 Parent(s): fbee9c4

More testing

Browse files
Files changed (1) hide show
  1. app.py +12 -4
app.py CHANGED
@@ -2,6 +2,8 @@ import gradio as gr
2
  from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel, BitsAndBytesConfig
3
  import torch
4
  import open_clip
 
 
5
 
6
  from huggingface_hub import hf_hub_download
7
 
@@ -60,13 +62,13 @@ def generate_caption(
60
  The generated caption.
61
  """
62
  inputs = preprocessor(image, return_tensors="pt").to(device)
 
63
 
64
  if use_float_16:
65
  inputs = inputs.to(torch.float16)
66
 
67
  generated_ids = model.generate(
68
- pixel_values=inputs.pixel_values,
69
- # attention_mask=inputs.attention_mask,
70
  max_length=64,
71
  )
72
 
@@ -113,7 +115,8 @@ def generate_captions_clip(
113
  def generate_captions(
114
  image,
115
  max_length,
116
- temperature
 
117
  ):
118
  """
119
  Generate captions for the given image.
@@ -133,6 +136,10 @@ def generate_captions(
133
  caption_git_large_coco = ""
134
  caption_oc_coca = ""
135
 
 
 
 
 
136
  # Generate captions for the image using the Blip base model
137
  try:
138
  caption_blip_base = generate_caption(preprocessor_blip_base, model_blip_base, image).strip()
@@ -168,6 +175,7 @@ iface = gr.Interface(
168
  gr.inputs.Image(label="Image"),
169
  gr.inputs.Slider(minimum=16, maximum=64, step=2, default=32, label="Max Length"),
170
  gr.inputs.Slider(minimum=0.5, maximum=1.5, step=0.1, default=1.0, label="Temperature"),
 
171
  ],
172
  # Define the outputs
173
  outputs=[
@@ -182,4 +190,4 @@ iface = gr.Interface(
182
  )
183
 
184
  # Launch the interface
185
- iface.launch()
 
2
  from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel, BitsAndBytesConfig
3
  import torch
4
  import open_clip
5
+ from PIL import Image
6
+ import requests
7
 
8
  from huggingface_hub import hf_hub_download
9
 
 
62
  The generated caption.
63
  """
64
  inputs = preprocessor(image, return_tensors="pt").to(device)
65
+ pixel_values = preprocessor(images=image, return_tensors="pt").pixel_values
66
 
67
  if use_float_16:
68
  inputs = inputs.to(torch.float16)
69
 
70
  generated_ids = model.generate(
71
+ pixel_values=pixel_values,
 
72
  max_length=64,
73
  )
74
 
 
115
  def generate_captions(
116
  image,
117
  max_length,
118
+ temperature,
119
+ use_sample_image,
120
  ):
121
  """
122
  Generate captions for the given image.
 
136
  caption_git_large_coco = ""
137
  caption_oc_coca = ""
138
 
139
+ if use_sample_image:
140
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
141
+ image = Image.open(requests.get(url, stream=True).raw)
142
+
143
  # Generate captions for the image using the Blip base model
144
  try:
145
  caption_blip_base = generate_caption(preprocessor_blip_base, model_blip_base, image).strip()
 
175
  gr.inputs.Image(label="Image"),
176
  gr.inputs.Slider(minimum=16, maximum=64, step=2, default=32, label="Max Length"),
177
  gr.inputs.Slider(minimum=0.5, maximum=1.5, step=0.1, default=1.0, label="Temperature"),
178
+ gr.inputs.Checkbox(default=False, type="bool", label="Use example image")
179
  ],
180
  # Define the outputs
181
  outputs=[
 
190
  )
191
 
192
  # Launch the interface
193
+ iface.launch(debug=True)