Spaces:
Runtime error
Runtime error
chats-bug
commited on
Commit
·
d3bbf05
1
Parent(s):
99813d9
Activated 4 models
Browse files
app.py
CHANGED
@@ -1,54 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration,
|
3 |
import torch
|
4 |
import open_clip
|
5 |
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
-
quantization_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True)
|
9 |
-
# Use when running on a CPU
|
10 |
-
device_map = {
|
11 |
-
"transformer.word_embeddings": 0,
|
12 |
-
"transformer.word_embeddings_layernorm": 0,
|
13 |
-
"lm_head": "cpu",
|
14 |
-
"transformer.h": 0,
|
15 |
-
"transformer.ln_f": 0,
|
16 |
-
}
|
17 |
-
|
18 |
-
# Load the Blip2 model
|
19 |
-
# preprocessor_blip2_8_bit = BlipProcessor.from_pretrained("Salesforce/blip2-opt-2.7b")
|
20 |
-
# model_blip2_8_bit = Blip2ForConditionalGeneration.from_pretrained(
|
21 |
-
# "Salesforce/blip2-opt-2.7b",
|
22 |
-
# device_map="auto",
|
23 |
-
# quantization_config=quantization_config,
|
24 |
-
# load_in_8bit=True
|
25 |
-
# )
|
26 |
-
|
27 |
# Load the Blip base model
|
28 |
preprocessor_blip_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
29 |
model_blip_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
30 |
|
31 |
-
#
|
32 |
-
|
33 |
-
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
46 |
# Transfer the models to the device
|
47 |
-
# model_blip2_8_bit.to(device)
|
48 |
model_blip_base.to(device)
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
|
53 |
|
54 |
def generate_caption(
|
@@ -149,22 +129,19 @@ def generate_captions(
|
|
149 |
str
|
150 |
The generated caption.
|
151 |
"""
|
152 |
-
# Generate captions for the image using the Blip2 model
|
153 |
-
# caption_blip2_8_bit = generate_caption(preprocessor_blip2_8_bit, model_blip2_8_bit, image, use_float_16=True).strip()
|
154 |
-
|
155 |
# Generate captions for the image using the Blip base model
|
156 |
caption_blip_base = generate_caption(preprocessor_blip_base, model_blip_base, image).strip()
|
157 |
|
158 |
-
#
|
159 |
-
|
160 |
|
161 |
-
#
|
162 |
-
|
163 |
|
164 |
-
#
|
165 |
-
|
166 |
|
167 |
-
return caption_blip_base
|
168 |
|
169 |
|
170 |
# Create the interface
|
@@ -178,11 +155,10 @@ iface = gr.Interface(
|
|
178 |
],
|
179 |
# Define the outputs
|
180 |
outputs=[
|
181 |
-
# gr.outputs.Textbox(label="Blip2 8-bit"),
|
182 |
gr.outputs.Textbox(label="Blip base"),
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
],
|
187 |
title="Image Captioning",
|
188 |
description="Generate captions for images using the Blip2 model, the Blip base model, the Blip large model, the GIT large coco model, and the CLIP model.",
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, VisionEncoderDecoderModel, BitsAndBytesConfig
|
3 |
import torch
|
4 |
import open_clip
|
5 |
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# Load the Blip base model
|
9 |
preprocessor_blip_base = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
10 |
model_blip_base = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
11 |
|
12 |
+
# Load the Blip large model
|
13 |
+
preprocessor_blip_large = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
14 |
+
model_blip_large = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
15 |
|
16 |
+
# Load the GIT coco model
|
17 |
+
preprocessor_git_large_coco = AutoProcessor.from_pretrained("microsoft/git-large-coco")
|
18 |
+
model_git_large_coco = AutoModelForCausalLM.from_pretrained("microsoft/git-large-coco")
|
19 |
|
20 |
+
# Load the CLIP model
|
21 |
+
model_oc_coca, _, transform_oc_coca = open_clip.create_model_and_transforms(
|
22 |
+
model_name="coca_ViT-L-14",
|
23 |
+
pretrained="mscoco_finetuned_laion2B-s13B-b90k"
|
24 |
+
)
|
25 |
|
26 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
# Transfer the models to the device
|
|
|
28 |
model_blip_base.to(device)
|
29 |
+
model_blip_large.to(device)
|
30 |
+
model_git_large_coco.to(device)
|
31 |
+
model_oc_coca.to(device)
|
32 |
|
33 |
|
34 |
def generate_caption(
|
|
|
129 |
str
|
130 |
The generated caption.
|
131 |
"""
|
|
|
|
|
|
|
132 |
# Generate captions for the image using the Blip base model
|
133 |
caption_blip_base = generate_caption(preprocessor_blip_base, model_blip_base, image).strip()
|
134 |
|
135 |
+
# Generate captions for the image using the Blip large model
|
136 |
+
caption_blip_large = generate_caption(preprocessor_blip_large, model_blip_large, image).strip()
|
137 |
|
138 |
+
# Generate captions for the image using the GIT coco model
|
139 |
+
caption_git_large_coco = generate_caption(preprocessor_git_large_coco, model_git_large_coco, image).strip()
|
140 |
|
141 |
+
# Generate captions for the image using the CLIP model
|
142 |
+
caption_oc_coca = generate_captions_clip(model_oc_coca, transform_oc_coca, image).strip()
|
143 |
|
144 |
+
return caption_blip_base, caption_blip_large, caption_git_large_coco, caption_oc_coca
|
145 |
|
146 |
|
147 |
# Create the interface
|
|
|
155 |
],
|
156 |
# Define the outputs
|
157 |
outputs=[
|
|
|
158 |
gr.outputs.Textbox(label="Blip base"),
|
159 |
+
gr.outputs.Textbox(label="Blip large"),
|
160 |
+
gr.outputs.Textbox(label="GIT large coco"),
|
161 |
+
gr.outputs.Textbox(label="CLIP"),
|
162 |
],
|
163 |
title="Image Captioning",
|
164 |
description="Generate captions for images using the Blip2 model, the Blip base model, the Blip large model, the GIT large coco model, and the CLIP model.",
|