Spaces:
Sleeping
Sleeping
- app.py +147 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import (
|
4 |
+
LlamaForCausalLM,
|
5 |
+
LlamaTokenizer,
|
6 |
+
GenerationConfig
|
7 |
+
)
|
8 |
+
from peft import PeftModel
|
9 |
+
|
10 |
+
# ------------------------------------------------------------------------------
|
11 |
+
# CONFIGURE MODEL & PIPELINE
|
12 |
+
# ------------------------------------------------------------------------------
|
13 |
+
BASE_MODEL = "deepseek-ai/DeepSeek-R1-Distill-Llama-8B"
|
14 |
+
FINETUNED_ADAPTER = "cheberle/autotrain-llama-milch"
|
15 |
+
|
16 |
+
# Generation hyperparameters
|
17 |
+
DEFAULT_MAX_NEW_TOKENS = 256
|
18 |
+
DEFAULT_TEMPERATURE = 0.7
|
19 |
+
DEFAULT_TOP_K = 50
|
20 |
+
DEFAULT_TOP_P = 0.9
|
21 |
+
|
22 |
+
# Load tokenizer from base model
|
23 |
+
tokenizer = LlamaTokenizer.from_pretrained(
|
24 |
+
BASE_MODEL
|
25 |
+
)
|
26 |
+
|
27 |
+
# Load the base model
|
28 |
+
base_model = LlamaForCausalLM.from_pretrained(
|
29 |
+
BASE_MODEL,
|
30 |
+
device_map="auto", # Automatically use GPU if available
|
31 |
+
torch_dtype=torch.float16 # Use half-precision to save memory
|
32 |
+
)
|
33 |
+
|
34 |
+
# Load the PEFT (LoRA) adapter on top of the base model
|
35 |
+
model = PeftModel.from_pretrained(
|
36 |
+
base_model,
|
37 |
+
FINETUNED_ADAPTER,
|
38 |
+
torch_dtype=torch.float16
|
39 |
+
)
|
40 |
+
|
41 |
+
model.eval() # put in eval mode
|
42 |
+
|
43 |
+
# ------------------------------------------------------------------------------
|
44 |
+
# GENERATION FUNCTION
|
45 |
+
# ------------------------------------------------------------------------------
|
46 |
+
def generate_text(prompt,
|
47 |
+
max_new_tokens=DEFAULT_MAX_NEW_TOKENS,
|
48 |
+
temperature=DEFAULT_TEMPERATURE,
|
49 |
+
top_k=DEFAULT_TOP_K,
|
50 |
+
top_p=DEFAULT_TOP_P):
|
51 |
+
"""Generate text from the finetuned model using the given parameters."""
|
52 |
+
# Tokenize the prompt
|
53 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
54 |
+
|
55 |
+
# Set up generation configuration
|
56 |
+
generation_config = GenerationConfig(
|
57 |
+
max_new_tokens=max_new_tokens,
|
58 |
+
temperature=temperature,
|
59 |
+
top_k=top_k,
|
60 |
+
top_p=top_p,
|
61 |
+
do_sample=True,
|
62 |
+
repetition_penalty=1.1, # adjust if needed
|
63 |
+
)
|
64 |
+
|
65 |
+
# Generate
|
66 |
+
with torch.no_grad():
|
67 |
+
output_tokens = model.generate(
|
68 |
+
**inputs,
|
69 |
+
generation_config=generation_config
|
70 |
+
)
|
71 |
+
|
72 |
+
# Decode the generated tokens
|
73 |
+
generated_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
74 |
+
|
75 |
+
# Remove the original prompt from the beginning to return only new text
|
76 |
+
if generated_text.startswith(prompt):
|
77 |
+
return generated_text[len(prompt):].strip()
|
78 |
+
else:
|
79 |
+
return generated_text
|
80 |
+
|
81 |
+
# ------------------------------------------------------------------------------
|
82 |
+
# GRADIO APP
|
83 |
+
# ------------------------------------------------------------------------------
|
84 |
+
def clear_inputs():
|
85 |
+
return "", ""
|
86 |
+
|
87 |
+
with gr.Blocks(css=".gradio-container {max-width: 800px; margin: auto;}") as demo:
|
88 |
+
gr.Markdown("## DeepSeek R1 Distill-Llama 8B + LoRA from `cheberle/autotrain-llama-milch`")
|
89 |
+
gr.Markdown(
|
90 |
+
"This app uses a base **DeepSeek R1 Distill-Llama 8B** model with "
|
91 |
+
"the **LoRA/PEFT adapter** from [`cheberle/autotrain-llama-milch`].\n\n"
|
92 |
+
"Type in a prompt, adjust generation parameters if you wish, and click 'Generate'."
|
93 |
+
)
|
94 |
+
|
95 |
+
with gr.Row():
|
96 |
+
with gr.Column():
|
97 |
+
prompt = gr.Textbox(
|
98 |
+
label="Prompt",
|
99 |
+
placeholder="Ask me anything...",
|
100 |
+
lines=5
|
101 |
+
)
|
102 |
+
with gr.Accordion("Advanced Generation Settings", open=False):
|
103 |
+
max_new_tokens = gr.Slider(
|
104 |
+
16, 1024,
|
105 |
+
value=DEFAULT_MAX_NEW_TOKENS,
|
106 |
+
step=1,
|
107 |
+
label="Max New Tokens"
|
108 |
+
)
|
109 |
+
temperature = gr.Slider(
|
110 |
+
0.0, 2.0,
|
111 |
+
value=DEFAULT_TEMPERATURE,
|
112 |
+
step=0.1,
|
113 |
+
label="Temperature"
|
114 |
+
)
|
115 |
+
top_k = gr.Slider(
|
116 |
+
0, 100,
|
117 |
+
value=DEFAULT_TOP_K,
|
118 |
+
step=1,
|
119 |
+
label="Top-k"
|
120 |
+
)
|
121 |
+
top_p = gr.Slider(
|
122 |
+
0.0, 1.0,
|
123 |
+
value=DEFAULT_TOP_P,
|
124 |
+
step=0.05,
|
125 |
+
label="Top-p"
|
126 |
+
)
|
127 |
+
|
128 |
+
generate_btn = gr.Button("Generate", variant="primary")
|
129 |
+
clear_btn = gr.Button("Clear")
|
130 |
+
|
131 |
+
with gr.Column():
|
132 |
+
output = gr.Textbox(
|
133 |
+
label="Model Output",
|
134 |
+
lines=12
|
135 |
+
)
|
136 |
+
|
137 |
+
# Button Actions
|
138 |
+
generate_btn.click(
|
139 |
+
fn=generate_text,
|
140 |
+
inputs=[prompt, max_new_tokens, temperature, top_k, top_p],
|
141 |
+
outputs=output
|
142 |
+
)
|
143 |
+
|
144 |
+
clear_btn.click(fn=clear_inputs, inputs=[], outputs=[prompt, output])
|
145 |
+
|
146 |
+
demo.queue(concurrency_count=1)
|
147 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.25.2
|
2 |
+
transformers>=4.30.0
|
3 |
+
accelerate
|
4 |
+
sentencepiece
|
5 |
+
peft
|
6 |
+
gradio
|