- app.py +10 -9
- requirements.txt +1 -1
app.py
CHANGED
@@ -5,12 +5,12 @@ from transformers import AutoTokenizer, TrainingArguments, Trainer, AutoModelFor
|
|
5 |
import torch
|
6 |
import os
|
7 |
|
8 |
-
# Force CPU
|
9 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
10 |
|
11 |
def train_model(file, hf_token):
|
12 |
try:
|
13 |
-
# Basic data loading
|
14 |
df = pd.read_csv(file.name)
|
15 |
print(f"Loaded CSV with {len(df)} rows")
|
16 |
|
@@ -20,19 +20,19 @@ def train_model(file, hf_token):
|
|
20 |
model = AutoModelForCausalLM.from_pretrained(
|
21 |
model_name,
|
22 |
low_cpu_mem_usage=True,
|
23 |
-
torch_dtype=torch.float32
|
24 |
)
|
25 |
|
26 |
-
#
|
27 |
dataset = Dataset.from_pandas(df)
|
28 |
|
29 |
args = TrainingArguments(
|
30 |
output_dir="./results",
|
31 |
per_device_train_batch_size=1,
|
32 |
num_train_epochs=1,
|
33 |
-
no_cuda=True,
|
34 |
-
|
35 |
-
|
36 |
)
|
37 |
|
38 |
trainer = Trainer(
|
@@ -42,11 +42,12 @@ def train_model(file, hf_token):
|
|
42 |
tokenizer=tokenizer
|
43 |
)
|
44 |
|
45 |
-
return f"Setup successful! Loaded {len(df)} rows"
|
46 |
|
47 |
except Exception as e:
|
48 |
return f"Error: {str(e)}\nType: {type(e)}"
|
49 |
|
|
|
50 |
demo = gr.Interface(
|
51 |
fn=train_model,
|
52 |
inputs=[
|
@@ -58,4 +59,4 @@ demo = gr.Interface(
|
|
58 |
)
|
59 |
|
60 |
if __name__ == "__main__":
|
61 |
-
demo.launch(debug=True)
|
|
|
5 |
import torch
|
6 |
import os
|
7 |
|
8 |
+
# Force CPU-only execution
|
9 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
10 |
|
11 |
def train_model(file, hf_token):
|
12 |
try:
|
13 |
+
# Basic data loading
|
14 |
df = pd.read_csv(file.name)
|
15 |
print(f"Loaded CSV with {len(df)} rows")
|
16 |
|
|
|
20 |
model = AutoModelForCausalLM.from_pretrained(
|
21 |
model_name,
|
22 |
low_cpu_mem_usage=True,
|
23 |
+
torch_dtype=torch.float32 # Ensure compatibility with CPU
|
24 |
)
|
25 |
|
26 |
+
# Prepare dataset
|
27 |
dataset = Dataset.from_pandas(df)
|
28 |
|
29 |
args = TrainingArguments(
|
30 |
output_dir="./results",
|
31 |
per_device_train_batch_size=1,
|
32 |
num_train_epochs=1,
|
33 |
+
no_cuda=True, # Disable GPU
|
34 |
+
use_cpu=True, # Ensure CPU usage
|
35 |
+
fp16=False # Disable mixed precision
|
36 |
)
|
37 |
|
38 |
trainer = Trainer(
|
|
|
42 |
tokenizer=tokenizer
|
43 |
)
|
44 |
|
45 |
+
return f"Setup successful! Loaded {len(df)} rows for training."
|
46 |
|
47 |
except Exception as e:
|
48 |
return f"Error: {str(e)}\nType: {type(e)}"
|
49 |
|
50 |
+
# Gradio interface
|
51 |
demo = gr.Interface(
|
52 |
fn=train_model,
|
53 |
inputs=[
|
|
|
59 |
)
|
60 |
|
61 |
if __name__ == "__main__":
|
62 |
+
demo.launch(debug=True, ssr=False) # Disable SSR for compatibility
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
gradio==
|
2 |
transformers==4.37.2
|
3 |
torch==2.1.2
|
4 |
datasets==2.16.1
|
|
|
1 |
+
gradio==5.12.0
|
2 |
transformers==4.37.2
|
3 |
torch==2.1.2
|
4 |
datasets==2.16.1
|