File size: 2,769 Bytes
6351ac7
 
 
 
 
bc337ec
6351ac7
 
 
e6c99be
bc337ec
e6c99be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6351ac7
 
e6c99be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
<!doctype html>
<html>
	<head>
		<meta charset="utf-8" />
		<meta name="viewport" content="width=device-width" />
		<title>Teachable Machine Fruits Model</title>
		<link rel="stylesheet" href="style.css" />
	</head>
	<body>
		<div class="card" style="text-align: center;">
			<h1>Teachable Machine Fruits Model</h1>
			<button type="button" id="startbutton" style="padding: 10px; margin-bottom:20px;" onclick="init()">Start</button>
			<div id="webcam-container"></div>
			<div id="label-container"></div>
			<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest/dist/tf.min.js"></script>
			<script src="https://cdn.jsdelivr.net/npm/@teachablemachine/image@latest/dist/teachablemachine-image.min.js"></script>
			<script type="text/javascript">
			    // the link to your model provided by Teachable Machine export panel
			    const URL = "./tm-my-image-model/";
			    let model, webcam, labelContainer, maxPredictions;
			    // Load the image model and setup the webcam
			    async function init() {
			    	document.getElementById("startbutton").style.visibility = "hidden";
			        const modelURL = URL + "model.json";
			        const metadataURL = URL + "metadata.json";
			        // load the model and metadata
			        model = await tmImage.load(modelURL, metadataURL);
			        maxPredictions = model.getTotalClasses();
			        // Convenience function to setup a webcam
			        const flip = true; // whether to flip the webcam
			        webcam = new tmImage.Webcam(200, 200, flip); // width, height, flip
			        await webcam.setup(); // request access to the webcam
			        await webcam.play();
			        window.requestAnimationFrame(loop);
			        // append elements to the DOM
			        document.getElementById("webcam-container").appendChild(webcam.canvas);
			        labelContainer = document.getElementById("label-container");
			        for (let i = 0; i < maxPredictions; i++) { // and class labels
			            labelContainer.appendChild(document.createElement("div"));
			        }
			    }
			    async function loop() {
			        webcam.update(); // update the webcam frame
			        await predict();
			        window.requestAnimationFrame(loop);
			    }
			    // run the webcam image through the image model
			    async function predict() {
			        // predict can take in an image, video or canvas html element
			        const prediction = await model.predict(webcam.canvas);
			        for (let i = 0; i < maxPredictions; i++) {
			            const classPrediction =
			                prediction[i].className + ": " + prediction[i].probability.toFixed(2);
			            labelContainer.childNodes[i].innerHTML = classPrediction;
			        }
			    }
			</script>
		</div>
	</body>
</html>