Spaces:
Running
Running
Update rag.py
Browse files- app/rag.py +35 -31
app/rag.py
CHANGED
@@ -27,13 +27,14 @@ from llama_index.embeddings.fastembed import FastEmbedEmbedding
|
|
27 |
QDRANT_API_URL = os.getenv('QDRANT_API_URL')
|
28 |
QDRANT_API_KEY = os.getenv('QDRANT_API_KEY')
|
29 |
|
|
|
|
|
|
|
30 |
class ChatPDF:
|
31 |
-
logging.basicConfig(level=logging.INFO)
|
32 |
-
logger = logging.getLogger(__name__)
|
33 |
query_engine = None
|
34 |
|
35 |
-
|
36 |
-
model_url = "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-gguf/resolve/main/Phi-3-mini-4k-instruct-q4.gguf"
|
37 |
|
38 |
# def messages_to_prompt(messages):
|
39 |
# prompt = ""
|
@@ -59,7 +60,7 @@ class ChatPDF:
|
|
59 |
def __init__(self):
|
60 |
self.text_parser = SentenceSplitter(chunk_size=512, chunk_overlap=20)
|
61 |
|
62 |
-
|
63 |
# client = QdrantClient(host="localhost", port=6333)
|
64 |
# client = QdrantClient(url=QDRANT_API_URL, api_key=QDRANT_API_KEY)
|
65 |
client = QdrantClient(":memory:")
|
@@ -69,7 +70,7 @@ class ChatPDF:
|
|
69 |
# enable_hybrid=True
|
70 |
)
|
71 |
|
72 |
-
|
73 |
self.embed_model = FastEmbedEmbedding(
|
74 |
# model_name="BAAI/bge-small-en"
|
75 |
)
|
@@ -89,7 +90,7 @@ class ChatPDF:
|
|
89 |
# tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
90 |
# tokenizer.save_pretrained("./models/tokenizer/")
|
91 |
|
92 |
-
|
93 |
Settings.text_splitter = self.text_parser
|
94 |
Settings.embed_model = self.embed_model
|
95 |
Settings.llm = llm
|
@@ -103,55 +104,57 @@ class ChatPDF:
|
|
103 |
|
104 |
docs = SimpleDirectoryReader(input_dir=files_dir).load_data()
|
105 |
|
106 |
-
|
107 |
for doc_idx, doc in enumerate(docs):
|
108 |
curr_text_chunks = self.text_parser.split_text(doc.text)
|
109 |
text_chunks.extend(curr_text_chunks)
|
110 |
doc_ids.extend([doc_idx] * len(curr_text_chunks))
|
111 |
|
112 |
-
|
113 |
for idx, text_chunk in enumerate(text_chunks):
|
114 |
node = TextNode(text=text_chunk)
|
115 |
src_doc = docs[doc_ids[idx]]
|
116 |
node.metadata = src_doc.metadata
|
117 |
nodes.append(node)
|
118 |
|
119 |
-
|
120 |
for node in nodes:
|
121 |
node_embedding = self.embed_model.get_text_embedding(
|
122 |
node.get_content(metadata_mode=MetadataMode.ALL)
|
123 |
)
|
124 |
node.embedding = node_embedding
|
125 |
|
126 |
-
|
127 |
storage_context = StorageContext.from_defaults(vector_store=self.vector_store)
|
128 |
-
|
129 |
index = VectorStoreIndex(
|
130 |
nodes=nodes,
|
131 |
storage_context=storage_context,
|
132 |
transformations=Settings.transformations,
|
133 |
)
|
134 |
|
135 |
-
|
136 |
-
retriever = VectorIndexRetriever(
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
)
|
141 |
|
142 |
-
|
143 |
-
response_synthesizer = get_response_synthesizer(
|
144 |
-
|
145 |
-
|
146 |
-
)
|
147 |
|
148 |
-
|
149 |
-
self.query_engine = RetrieverQueryEngine(
|
150 |
-
|
151 |
-
|
152 |
-
)
|
|
|
|
|
153 |
|
154 |
-
#
|
155 |
# hyde = HyDEQueryTransform(include_original=True)
|
156 |
# self.hyde_query_engine = TransformQueryEngine(vector_query_engine, hyde)
|
157 |
|
@@ -159,8 +162,9 @@ class ChatPDF:
|
|
159 |
if not self.query_engine:
|
160 |
return "Please, add a PDF document first."
|
161 |
|
162 |
-
|
163 |
-
response = self.query_engine.query(str_or_query_bundle=query)
|
|
|
164 |
print(response)
|
165 |
return response
|
166 |
|
|
|
27 |
QDRANT_API_URL = os.getenv('QDRANT_API_URL')
|
28 |
QDRANT_API_KEY = os.getenv('QDRANT_API_KEY')
|
29 |
|
30 |
+
logging.basicConfig(level=logging.INFO)
|
31 |
+
logger = logging.getLogger(__name__)
|
32 |
+
|
33 |
class ChatPDF:
|
|
|
|
|
34 |
query_engine = None
|
35 |
|
36 |
+
model_url = "https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat-GGUF/resolve/main/qwen1_5-1_8b-chat-q8_0.gguf"
|
37 |
+
# model_url = "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-gguf/resolve/main/Phi-3-mini-4k-instruct-q4.gguf"
|
38 |
|
39 |
# def messages_to_prompt(messages):
|
40 |
# prompt = ""
|
|
|
60 |
def __init__(self):
|
61 |
self.text_parser = SentenceSplitter(chunk_size=512, chunk_overlap=20)
|
62 |
|
63 |
+
logger.info("initializing the vector store related objects")
|
64 |
# client = QdrantClient(host="localhost", port=6333)
|
65 |
# client = QdrantClient(url=QDRANT_API_URL, api_key=QDRANT_API_KEY)
|
66 |
client = QdrantClient(":memory:")
|
|
|
70 |
# enable_hybrid=True
|
71 |
)
|
72 |
|
73 |
+
logger.info("initializing the FastEmbedEmbedding")
|
74 |
self.embed_model = FastEmbedEmbedding(
|
75 |
# model_name="BAAI/bge-small-en"
|
76 |
)
|
|
|
90 |
# tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
|
91 |
# tokenizer.save_pretrained("./models/tokenizer/")
|
92 |
|
93 |
+
logger.info("initializing the global settings")
|
94 |
Settings.text_splitter = self.text_parser
|
95 |
Settings.embed_model = self.embed_model
|
96 |
Settings.llm = llm
|
|
|
104 |
|
105 |
docs = SimpleDirectoryReader(input_dir=files_dir).load_data()
|
106 |
|
107 |
+
logger.info("enumerating docs")
|
108 |
for doc_idx, doc in enumerate(docs):
|
109 |
curr_text_chunks = self.text_parser.split_text(doc.text)
|
110 |
text_chunks.extend(curr_text_chunks)
|
111 |
doc_ids.extend([doc_idx] * len(curr_text_chunks))
|
112 |
|
113 |
+
logger.info("enumerating text_chunks")
|
114 |
for idx, text_chunk in enumerate(text_chunks):
|
115 |
node = TextNode(text=text_chunk)
|
116 |
src_doc = docs[doc_ids[idx]]
|
117 |
node.metadata = src_doc.metadata
|
118 |
nodes.append(node)
|
119 |
|
120 |
+
logger.info("enumerating nodes")
|
121 |
for node in nodes:
|
122 |
node_embedding = self.embed_model.get_text_embedding(
|
123 |
node.get_content(metadata_mode=MetadataMode.ALL)
|
124 |
)
|
125 |
node.embedding = node_embedding
|
126 |
|
127 |
+
logger.info("initializing the storage context")
|
128 |
storage_context = StorageContext.from_defaults(vector_store=self.vector_store)
|
129 |
+
logger.info("indexing the nodes in VectorStoreIndex")
|
130 |
index = VectorStoreIndex(
|
131 |
nodes=nodes,
|
132 |
storage_context=storage_context,
|
133 |
transformations=Settings.transformations,
|
134 |
)
|
135 |
|
136 |
+
# logger.info("configure retriever")
|
137 |
+
# retriever = VectorIndexRetriever(
|
138 |
+
# index=index,
|
139 |
+
# similarity_top_k=6,
|
140 |
+
# # vector_store_query_mode="hybrid"
|
141 |
+
# )
|
142 |
|
143 |
+
# logger.info("configure response synthesizer")
|
144 |
+
# response_synthesizer = get_response_synthesizer(
|
145 |
+
# # streaming=True,
|
146 |
+
# response_mode=ResponseMode.COMPACT,
|
147 |
+
# )
|
148 |
|
149 |
+
# logger.info("assemble query engine")
|
150 |
+
# self.query_engine = RetrieverQueryEngine(
|
151 |
+
# retriever=retriever,
|
152 |
+
# response_synthesizer=response_synthesizer,
|
153 |
+
# )
|
154 |
+
|
155 |
+
self.query_engine = index.as_query_engine()
|
156 |
|
157 |
+
# logger.info("creating the HyDEQueryTransform instance")
|
158 |
# hyde = HyDEQueryTransform(include_original=True)
|
159 |
# self.hyde_query_engine = TransformQueryEngine(vector_query_engine, hyde)
|
160 |
|
|
|
162 |
if not self.query_engine:
|
163 |
return "Please, add a PDF document first."
|
164 |
|
165 |
+
logger.info("retrieving the response to the query")
|
166 |
+
# response = self.query_engine.query(str_or_query_bundle=query)
|
167 |
+
response = self.query_engine.query(query)
|
168 |
print(response)
|
169 |
return response
|
170 |
|