mitulagr2 commited on
Commit
bdc84e2
·
1 Parent(s): 53ff648

Update rag.py

Browse files
Files changed (1) hide show
  1. app/rag.py +35 -31
app/rag.py CHANGED
@@ -27,13 +27,14 @@ from llama_index.embeddings.fastembed import FastEmbedEmbedding
27
  QDRANT_API_URL = os.getenv('QDRANT_API_URL')
28
  QDRANT_API_KEY = os.getenv('QDRANT_API_KEY')
29
 
 
 
 
30
  class ChatPDF:
31
- logging.basicConfig(level=logging.INFO)
32
- logger = logging.getLogger(__name__)
33
  query_engine = None
34
 
35
- # model_url = "https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat-GGUF/resolve/main/qwen1_5-1_8b-chat-q8_0.gguf"
36
- model_url = "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-gguf/resolve/main/Phi-3-mini-4k-instruct-q4.gguf"
37
 
38
  # def messages_to_prompt(messages):
39
  # prompt = ""
@@ -59,7 +60,7 @@ class ChatPDF:
59
  def __init__(self):
60
  self.text_parser = SentenceSplitter(chunk_size=512, chunk_overlap=20)
61
 
62
- self.logger.info("initializing the vector store related objects")
63
  # client = QdrantClient(host="localhost", port=6333)
64
  # client = QdrantClient(url=QDRANT_API_URL, api_key=QDRANT_API_KEY)
65
  client = QdrantClient(":memory:")
@@ -69,7 +70,7 @@ class ChatPDF:
69
  # enable_hybrid=True
70
  )
71
 
72
- self.logger.info("initializing the FastEmbedEmbedding")
73
  self.embed_model = FastEmbedEmbedding(
74
  # model_name="BAAI/bge-small-en"
75
  )
@@ -89,7 +90,7 @@ class ChatPDF:
89
  # tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
90
  # tokenizer.save_pretrained("./models/tokenizer/")
91
 
92
- self.logger.info("initializing the global settings")
93
  Settings.text_splitter = self.text_parser
94
  Settings.embed_model = self.embed_model
95
  Settings.llm = llm
@@ -103,55 +104,57 @@ class ChatPDF:
103
 
104
  docs = SimpleDirectoryReader(input_dir=files_dir).load_data()
105
 
106
- self.logger.info("enumerating docs")
107
  for doc_idx, doc in enumerate(docs):
108
  curr_text_chunks = self.text_parser.split_text(doc.text)
109
  text_chunks.extend(curr_text_chunks)
110
  doc_ids.extend([doc_idx] * len(curr_text_chunks))
111
 
112
- self.logger.info("enumerating text_chunks")
113
  for idx, text_chunk in enumerate(text_chunks):
114
  node = TextNode(text=text_chunk)
115
  src_doc = docs[doc_ids[idx]]
116
  node.metadata = src_doc.metadata
117
  nodes.append(node)
118
 
119
- self.logger.info("enumerating nodes")
120
  for node in nodes:
121
  node_embedding = self.embed_model.get_text_embedding(
122
  node.get_content(metadata_mode=MetadataMode.ALL)
123
  )
124
  node.embedding = node_embedding
125
 
126
- self.logger.info("initializing the storage context")
127
  storage_context = StorageContext.from_defaults(vector_store=self.vector_store)
128
- self.logger.info("indexing the nodes in VectorStoreIndex")
129
  index = VectorStoreIndex(
130
  nodes=nodes,
131
  storage_context=storage_context,
132
  transformations=Settings.transformations,
133
  )
134
 
135
- self.logger.info("configure retriever")
136
- retriever = VectorIndexRetriever(
137
- index=index,
138
- similarity_top_k=6,
139
- # vector_store_query_mode="hybrid"
140
- )
141
 
142
- self.logger.info("configure response synthesizer")
143
- response_synthesizer = get_response_synthesizer(
144
- # streaming=True,
145
- response_mode=ResponseMode.COMPACT,
146
- )
147
 
148
- self.logger.info("assemble query engine")
149
- self.query_engine = RetrieverQueryEngine(
150
- retriever=retriever,
151
- response_synthesizer=response_synthesizer,
152
- )
 
 
153
 
154
- # self.logger.info("creating the HyDEQueryTransform instance")
155
  # hyde = HyDEQueryTransform(include_original=True)
156
  # self.hyde_query_engine = TransformQueryEngine(vector_query_engine, hyde)
157
 
@@ -159,8 +162,9 @@ class ChatPDF:
159
  if not self.query_engine:
160
  return "Please, add a PDF document first."
161
 
162
- self.logger.info("retrieving the response to the query")
163
- response = self.query_engine.query(str_or_query_bundle=query)
 
164
  print(response)
165
  return response
166
 
 
27
  QDRANT_API_URL = os.getenv('QDRANT_API_URL')
28
  QDRANT_API_KEY = os.getenv('QDRANT_API_KEY')
29
 
30
+ logging.basicConfig(level=logging.INFO)
31
+ logger = logging.getLogger(__name__)
32
+
33
  class ChatPDF:
 
 
34
  query_engine = None
35
 
36
+ model_url = "https://huggingface.co/Qwen/Qwen1.5-1.8B-Chat-GGUF/resolve/main/qwen1_5-1_8b-chat-q8_0.gguf"
37
+ # model_url = "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-gguf/resolve/main/Phi-3-mini-4k-instruct-q4.gguf"
38
 
39
  # def messages_to_prompt(messages):
40
  # prompt = ""
 
60
  def __init__(self):
61
  self.text_parser = SentenceSplitter(chunk_size=512, chunk_overlap=20)
62
 
63
+ logger.info("initializing the vector store related objects")
64
  # client = QdrantClient(host="localhost", port=6333)
65
  # client = QdrantClient(url=QDRANT_API_URL, api_key=QDRANT_API_KEY)
66
  client = QdrantClient(":memory:")
 
70
  # enable_hybrid=True
71
  )
72
 
73
+ logger.info("initializing the FastEmbedEmbedding")
74
  self.embed_model = FastEmbedEmbedding(
75
  # model_name="BAAI/bge-small-en"
76
  )
 
90
  # tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
91
  # tokenizer.save_pretrained("./models/tokenizer/")
92
 
93
+ logger.info("initializing the global settings")
94
  Settings.text_splitter = self.text_parser
95
  Settings.embed_model = self.embed_model
96
  Settings.llm = llm
 
104
 
105
  docs = SimpleDirectoryReader(input_dir=files_dir).load_data()
106
 
107
+ logger.info("enumerating docs")
108
  for doc_idx, doc in enumerate(docs):
109
  curr_text_chunks = self.text_parser.split_text(doc.text)
110
  text_chunks.extend(curr_text_chunks)
111
  doc_ids.extend([doc_idx] * len(curr_text_chunks))
112
 
113
+ logger.info("enumerating text_chunks")
114
  for idx, text_chunk in enumerate(text_chunks):
115
  node = TextNode(text=text_chunk)
116
  src_doc = docs[doc_ids[idx]]
117
  node.metadata = src_doc.metadata
118
  nodes.append(node)
119
 
120
+ logger.info("enumerating nodes")
121
  for node in nodes:
122
  node_embedding = self.embed_model.get_text_embedding(
123
  node.get_content(metadata_mode=MetadataMode.ALL)
124
  )
125
  node.embedding = node_embedding
126
 
127
+ logger.info("initializing the storage context")
128
  storage_context = StorageContext.from_defaults(vector_store=self.vector_store)
129
+ logger.info("indexing the nodes in VectorStoreIndex")
130
  index = VectorStoreIndex(
131
  nodes=nodes,
132
  storage_context=storage_context,
133
  transformations=Settings.transformations,
134
  )
135
 
136
+ # logger.info("configure retriever")
137
+ # retriever = VectorIndexRetriever(
138
+ # index=index,
139
+ # similarity_top_k=6,
140
+ # # vector_store_query_mode="hybrid"
141
+ # )
142
 
143
+ # logger.info("configure response synthesizer")
144
+ # response_synthesizer = get_response_synthesizer(
145
+ # # streaming=True,
146
+ # response_mode=ResponseMode.COMPACT,
147
+ # )
148
 
149
+ # logger.info("assemble query engine")
150
+ # self.query_engine = RetrieverQueryEngine(
151
+ # retriever=retriever,
152
+ # response_synthesizer=response_synthesizer,
153
+ # )
154
+
155
+ self.query_engine = index.as_query_engine()
156
 
157
+ # logger.info("creating the HyDEQueryTransform instance")
158
  # hyde = HyDEQueryTransform(include_original=True)
159
  # self.hyde_query_engine = TransformQueryEngine(vector_query_engine, hyde)
160
 
 
162
  if not self.query_engine:
163
  return "Please, add a PDF document first."
164
 
165
+ logger.info("retrieving the response to the query")
166
+ # response = self.query_engine.query(str_or_query_bundle=query)
167
+ response = self.query_engine.query(query)
168
  print(response)
169
  return response
170