Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
-
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
4 |
-
|
5 |
from flask import Flask, request, jsonify
|
6 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
7 |
import torch
|
|
|
|
|
|
|
|
|
8 |
|
9 |
app = Flask(__name__)
|
10 |
|
@@ -32,18 +32,13 @@ def fuzzy_formality(score, threshold=0.75):
|
|
32 |
|
33 |
@app.route("/predict", methods=["POST"])
|
34 |
def predict_formality():
|
35 |
-
# Get input text from request
|
36 |
text = request.json.get("text")
|
37 |
if not text:
|
38 |
return jsonify({"error": "Text input is required"}), 400
|
39 |
|
40 |
# Tokenize input
|
41 |
encoding = tokenizer(
|
42 |
-
text,
|
43 |
-
add_special_tokens=True,
|
44 |
-
truncation=True,
|
45 |
-
padding="max_length",
|
46 |
-
return_tensors="pt"
|
47 |
)
|
48 |
|
49 |
# Get predictions
|
@@ -52,7 +47,7 @@ def predict_formality():
|
|
52 |
|
53 |
# Extract formality score
|
54 |
softmax_scores = output.logits.softmax(dim=1)
|
55 |
-
formality_score = softmax_scores[:, 1].item()
|
56 |
|
57 |
# Classify using fuzzy logic
|
58 |
result = fuzzy_formality(formality_score)
|
@@ -63,5 +58,6 @@ def predict_formality():
|
|
63 |
**result
|
64 |
})
|
65 |
|
|
|
66 |
if __name__ == "__main__":
|
67 |
app.run(host="0.0.0.0", port=7860)
|
|
|
|
|
|
|
|
|
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
import torch
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Set writable cache
|
7 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
8 |
|
9 |
app = Flask(__name__)
|
10 |
|
|
|
32 |
|
33 |
@app.route("/predict", methods=["POST"])
|
34 |
def predict_formality():
|
|
|
35 |
text = request.json.get("text")
|
36 |
if not text:
|
37 |
return jsonify({"error": "Text input is required"}), 400
|
38 |
|
39 |
# Tokenize input
|
40 |
encoding = tokenizer(
|
41 |
+
text, add_special_tokens=True, truncation=True, padding="max_length", return_tensors="pt"
|
|
|
|
|
|
|
|
|
42 |
)
|
43 |
|
44 |
# Get predictions
|
|
|
47 |
|
48 |
# Extract formality score
|
49 |
softmax_scores = output.logits.softmax(dim=1)
|
50 |
+
formality_score = softmax_scores[:, 1].item()
|
51 |
|
52 |
# Classify using fuzzy logic
|
53 |
result = fuzzy_formality(formality_score)
|
|
|
58 |
**result
|
59 |
})
|
60 |
|
61 |
+
# Run on correct port
|
62 |
if __name__ == "__main__":
|
63 |
app.run(host="0.0.0.0", port=7860)
|